
pleuin

*** Request QOOOOO.14191 for plevin@cheese.bbn.com Tue Jul 26 15:48:57 198f

Account.

Submi 11 ed

Prlnt ed

Font

Orient a tlon:

Line—spac ing:

Character-spacing:

Page—break:

Top—raargin:

Lef t—marg in:

212

Tue

Tue

74

Portrai t

600

1100

After 60 1ines

550

750

8022

Jul 26 15:49:58 1988

Jul 26 15:48:57 1988

SIGA Specification BBN Advanced Computers Inc

1

2

3

3. 1

3.2

3 .3

4

4 .

4 .

4 .

4 .

4

4.

4.

4.

4 .

4.

4.

4,

4.

4.

4.

5

5 .

5 .

5.

5.

5.

5.

5.

5.

5.

5.

5.

5.

5.

5.

5.

5.

5.

5.

5.

Table of Contents

Introduction 1

Terminology 1

Document Standards 4

Register Definition Syntax 4

Logical Operators 5

Timing Diagram Symbols 5

Functional Overview 6

Functional Unit Description 7

Requestor 7

Server 7

TCS Control Unit 8

Configuration/Status Unit ... 8

System Operation 8

Function Requests 8

Function Responses 10

Basic Message Formats 11

Read Messages 11

Downstream 11

Upstream 12
Write Messages 13

1 Downstream 14

2 Upstream 15

Detailed Functlonal Description 15

Requestor 16

Operation 17

Overview 17

RTC and related functions 19

Real Time Clock and Prescaler 20

Time Of Next Interrupt 24

Priority Time Slot 26

Function Request. Types 28

T-Bus Request Screening 29
Initial Message Start/Retry Criterion 30
Random Start/Retry 30
Slotted Start/Retry 33
Start/Retry Criterion Selection 35

Switch Tx Protocol Timers 38

Reject Timer 38
Connection Timer 40

Protocol Timer Programming 41

Anticipation Support 41

Function Requests 42

1

2

3

4

1

2

1

1 . 1

1.2

2

2.

2.

1

1 . 1

1.2

1.2.1

1.2.2

1.2.3

1 .3

1 .4

1 .5

1.5.1

1.5.2

1.5.3

1.6

1.6.1

1.6.2

1.6.3

1.7

1.7.1

Preliminary Release Page 1 July 25, 1988

5

5

5

5

5

5.

5

5

5

5.

5

5.

5.

5

5

5.

5.

5.

5. 1

5. 1

5. 1

5. 1

5. 1

5. 1

5. 1

5. 1

5. 1

5.2

5

5.

5.

5.

5.

5.

5.

5.2

5.2

5.2

5.2

2

2

2.

2.

2.2

2.3

7 .

8

B.

8.

8.

9

10

11

12

12

12

12

13

14

15

1

2

2. 1

2

1

Function Responses 44

Locked Sequences 44

Opening and Maintaining Locks 45

Dropping Locks 46

Auto Drop 47

Stolen Bit Support 48

Quick Drop 49

Reverse Profile Monitoring 49

Error Detection and Reporting 51

FQ Errors 51

Switch Errors 53

Remote Errors 54

Disabled Operation 55

Configuration Registers 55

Test Registers 56

Switch Message Protocol 62

Physical Route Address Generation 63

Downstream Message Components 63

Header 64

Body 66

Checksum Support 66

Checksum Calculation 68

Header Partial Sum 68

Message Checksum 68

T-Bus Interface 69

LCON Interface 71

Data Bus Enable Control 71

73Server

Operation 74

Overview 74

Anticipation Support 76

.1 Func t ion Re que sts 76

.2 Function Responses 77

Locked Sequences 78

Stolen Bit Support 79

Error Reporting 80

6 Disabled Operation 80

7 Configuration Registers 81

8 Test Registers 84

Switch Message Protocol 86

1 Upstream Message Components 87

2 Stolen and Error Messages 88

3 Upstream Message Types 89

4 Checksum Calculation 89

5 Rejects 91

1

1 . 1

1 .2

1.2

1.2

1 .3

1 .4

1 .5

1

1

1

2

2

2

2

2

2

Preliminary Release Page 2 July 25, 1988

5.2.3 T-Bus Interface 92

5.2.4 LCON Interface 92

5.2.4.1 Data Bus Enable Control 93

5.3 TCS Control Unit (TCU) 93
5.3.1 I/O Description 94
5.3.2 Read/Write Operation 95

5.3.3 Register Map 97

5.3.4 Normal T-Bus Operations 100

5.3.5 Special T-Bus Operations 100

5.3.6 CSU Map Initialization 101

5.4 Configuration/Status Unit 101
5.4.1 Normal Register Accesses 101

5.4.2 Synchronized Accesses 101

5.4.3 Interleaver Loader 102

5.4.3.1 Address Register Access 103

5.4.3.2 Data Register Access 104

5.4.4 Debug Support 105

5.4.5 Restriction Summary 106

6 Programming Model 106
6. 1 Memory Map 107
6.2 Error Code Summary 107

7 Special Topics 108
7.1 Initialization States 108

7.2 Synchronization Ill
8 Pin Description and Pinout 114
9 A.C./D.C. Parameters 120

Preliminary Release Page 3 July 25, 1988

1 Introduct i on

The SIGA is a gate array device which serves as the

bidirectional interface between a Computational Node and the

Switch network of the Butterfly II Parallel Processor. As

such, the SIGA provides devices on each Computational Node with

virtually transparent read and write data access to similar

devices on physically remote nodes. The SIGA

accomplishes this by accepting/presenting data via the
standard interface that these devices support - namely the T—

Bus - and then presenting/accepting this same data to the
Butterfly Switch interface for transport.

This document will present both a detailed functional and

operational description of the SIGA. It is intended to be used

as a design guide for both hardware and software system

engineers. This specification is necessarily limited m

its scope and thus will touch upon other Butterfly II—related

subjects only when it is necessary for completeness. Therefore.

it is assumed that the reader of this document has a general

knowledge of the concepts of the Butterfly II architecture and

operation. The reference documents are as follows:

T—Bus Specification (Ward Harriman)

Switch Gate Array Design Specification (Ward Harriman)

Butterfly II Level Converter Array Specification (Mike
Sol 1ins)

Switch Protocol Specification (Ward Harriman)

Reference Documents

Figure 1

2 Terminology

The following terms will be used throughout this document

Byte - Refers to an 8-bit quantity.

Preliminary Release Page 1 July 25, 1988

SIGA Specification BBN Advanced Computers Inr

Anticipation - A feature of the SIGA design that allows the SIGA

to take advantage of certain parallel optimizations.

Downstream Node - The node which services a switch transaction.

Drop—Lock — When the Requestor negates Frame during a locked

sequence, causing the Server to issue a FREE-LOCK.

Function Response - A generic term for the various incarnations

of a response to a function request from some downstream T-Bus

slave to an upstream T—Bus slave. This includes the

transformations that the response undergoes as it travels from

the downstream T—Bus, downstream SIGA, Switch, upstream SIGA, and

finally the upstream T—Bus. (see Function Request)

Function Request - A generic term for the various incarnations of

a request from some upstream T—Bus master to a downstream T-Bus

slave. This includes the transformations that the request

undergoes as it travels through the upstream T-Bus. upstream

SIGA, Switch, downstream SIGA, and finally the downstream T-Bus.

(see Function Response)

Final Locked message — The same as a Locked message except that

the Switch path is released by letting Frame=0 for at least two

Switch Intervals after the operation has been acknowledged.

Half-Word - Refers to a 16-bit quantity, (see Word)

Initial Locked message - Occurs under the same circumstances as

the Unlocked message except that the Switch path is held open

once the operation has been acknowledged without errors.

Local Errors - Errors which originate in the Requestor.

Logical Route Address — A 9—bit Switch node address generated

from either the Interleaver or the T—Bus. This address is

then transformed, possibly by randomizing some of the bits, into

the Physical Route Address.

Locked message - A message which occurs when the Switch path was

already locked and causes it continue to be locked after the
operation has been acknowledged.

Message - With the exception of Reject, a Message is the

Preliminary Release Page 2 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

assertion of Frame (downstream message) or Reverse (upstream
message) possibly with associated data on the data lines.

Message Acknowledgment - Also known as M_ACK. This refers to the

assertion of Reverse for at least two Switch Intervals during a

function response. It indicates that the downstream Server has

Acknowledged the receipt of a Function Request.

Message Header - The part of a downstream Switch message that

carries routing information. That part is stripped-off by the

Switch and thus never reaches the downstream Server The message
header for an upstream Switch message is null.

Message Body — The part of the downstream Switch message that

carries the command, address, data, and checksum bytes.

Multi—Word Transfer — Refers to a read or write function request

that involves more than one word (32 bit) of data

Operational State - A SIGA initialization state which allows full

operation of the SIGA.

Pad - A special class of downstream message which contains all

zero's for data. It is used by the Requestor to hold the Switch

path open while it awaits a message acknowledgement

Physical Route Address — The transformation of the Logical Route

Address after some of its bits have been randomized. The Physical

Route Address is placed into the downstream Message Header.

Quick—Drop - This is an optimization in the Requestor where the

R_FRAME signal is negated as soon as possible after an R_REVERSE

is rece ived.

Quiescent State — A SIGA initialization state which allows

partial operation of the SIGA.

Remote Errors - Errors which originate in the Server.

Reject — An assertion of Reverse for one Switch Interval.
Indicates that a message was rejected at either a Server or an

SGA.

Sequence - A function request followed by a function response.

Preliminary Release Page 3 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Split-Cycle - A T—Bus Read transaction where the Master releases
the bus while the Slave is completing the transaction.

Switch Interval - The 25 ns period in which Switch data is

propogated.

Switch Modulus - The number of ports that a basic switching

element can handle. That number is currently eight.

Transaction - Another word for a Sequence.

Unlocked Message - Occurs when the Switch path had
previously been "torn-down". This occurs whenever Frame was
"0" for at least two Switch Intervals. Once the operation

has been acknowledged, the path is torn-down again

Upstream Node - The node which initiates a switch transaction

Valid Message - A downstream message which carries a read or
write request and does not violate switch protocol.

Word - Refers to a 32-bit quantity, (see Half-Word)

3 Document Standards

The following describes some of the standard syntax and
expressions used in this document.

3.1 Register Definition Syntax

A typical register definition is shown in Figure 2. Referring to
Figure 2, the "-" in any bit indicates that this bit is a
"don't care" on a write and indeterminate on a read. If "-"

totally fills a field of eight bits, that field should NEVER be
written to but of course, can be read from. The entire

register may be referred to in any one of the following
ways: The sub-fields, shown in Figure 2 within "[]", can be
referred to in various ways. For instance, the "Cnt" subfield

could be referred to as:

Preliminary Release Page 4 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Register: Protocol_Timer_Config<15..0>

15 0

I I
3..0 3..0 7 0

CCCC PPPP —NNNNNN

[Cnt] [Pre] [Con]

Register Syntax Definition

Figure 2

(1) Protocol_Timer_Config<15..0>
(2) Protocol_Timer_Config
(3) PTC<15..0>, or
(4) PTC

(1) Protocol_Timer_Config<15..12>
(2) Protocol_Timer_Config.Cnt<3..0>
(3) Protocol_Timer_Config.Cnt
(4) PTC.Con

3.2 Logical Operators

Figure 3 shows the standard operators used in this document.

3.3 Timing Diagram Symbols

Timing diagrams use ASCII characters to reprsent signal states.

Figure 4 illustrates some of those symbols and their associated
meanings. In addition, if no clock signal is present in a timing

Preliminary Release Page 5 July 25, 1988

SIGA Specification

OPERATOR

&

#

$
i

i It

BBN Advanced Computers Inc

FUNCTION

logical "and"

logical "or"

logical "exor"

1og1cal "not"

logical "exnor'

concatenate

Example — Logical Operators

Figure 3

SYMBOL

H

MEANING

1og ical "1"

1og ical "0"

continue previous state

state unknown and unimportant

Example — Logical Operators

Figure 4

diagram, it is assumed that each character column represents an

active transition of the appropriate clock.

4 Functional Overview

The following describes the basic functionality of the SIGA at a

conceptual level.

Preliminary Release Page 6 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

4.1 Functional Unit Description

The SIGA is composed of four basic elements, the Requestor,

Server, Control Net Interface and the Config/Status Unit.
Although these are physically co—located and share some common

logic and control, they are functionally independent units and

will be described separately.

4.1.1 Reques tor

The Requestor is a T-Bus slave device which transparently couples

physically remote T-Bus slave devices to the local T-Bus by
interacting with both the Switch and the downstream Server. The

Requestor appears to the current T—Bus master as a segment of
memory which is out of the range of physical memory at the local

node. Signals on the T-Bus alert the Requestor that the current

access is for a remote location and the Requestor then initiates

the switch transaction to comply with the master's read or write

request.

Since the transaction is not completed immediately (indicated by
the Requestor with a PROMISE response) , the requesting T-Bus
master follows the T—Bus protocol and releases the bus so that
other devices may use it. The Requestor eventually regains

control of the T—Bus, alerts the requesting master that the read

or write operation has been completed, and returns data or an

error indication. If the current sequence is locked, as

requested by the T-Bus master, and no errors are encountered, the
Requestor holds open the Switch path for the next transaction
rather than rearbitrating for a new Switch path. Any errors that

may have occured during this operation are signalled to the T—Bus
Master through the ERROR response.

4.1.2 Server

The Server acts as a master on the local T-Bus of the downstream

node and services requests from the upstream node's Requestor.
When a new valid message enters the Server from the Switch, the
Server obtains the local T-Bus; locks the T-Bus slave, if

desired; performs the read or write operation; and then returns
the data and/or error byte to the Upstream Node's Requestor. The
Server can also initiate other special operations independently

Preliminary Release Page 7 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

of receiving a new Switch message. This operation, known as

drop—locks, is described elsewhere in this document.

4.1.3 TCS Control Unit

The basic purpose of the TCS Control Unit (TCU) is to
give the serial interface of the TCS Control Slave Processor

access to the T—Bus interface — in essence, to act as a protocol

converter. A secondary function is to allow the TCS Slave

Processor DIRECT access to some of the internal functions of the

SIGA, rather than forcing it to access via the T—Bus

interface. This is useful for fault—to1erance and "out—of-

band" functions such as bootstrapping.

4.1.4 Configuration/Status Unit

The Config/Status Unit (CSU), acting as a T-Bus slave, allows
read/write access to all programmable parameters of the
Requestor, Server and TCS Control Unit. The CSU also provides

convenient access to the internal state of certain nodes for

testabi1lty.

4.2 System Operation

From a high—level view, the SIGA is one link in the chain of

devices that allows a T-Bus device to fulfill a function request

with a function response. The role of the SIGA in fulfilling

both function requests and responses is now described.

4.2.1 Function Requests

A local T—Bus master in the upstream node, usually the CPU,

initiates the sequence by placing an address on the T-Bus,

which is detected by the SIGA Requestor as a remote access

request. During the T—Bus request phase, the SIGA stores the
address, produces and stores the bid, and command bytes. It
then initiates the downstream message at the Switch interface

by asserting Frame and placing the bid symbols on the Switch
data lines. Normally, this message tramsmission is initiated by
the SIGA immediately upon receiving the address from the T—Bus,

Preliminary Release Page 8 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

but it can be programmed to start later. On a write, the SIGA

loads its data registers during the response phase of the T—

Bus cycle. All operations are split-cycle and thus the Server

will release the bus while it processes the transaction request.

If there is no Switch contention, the assembled message
continues to be transmitted and is ultimately appended with

a checksum derived from the message data bytes. If there is

Switch contention, a Reject is generated by the Switch and

eventually makes its way upstream to the Requestor via the

Reverse line When this happens, the Requestor negates Frame,

waits for a predetermined amount of time and then retries the

message by asserting Frame and sending the message components

stored from the first attempt.

Sometime after the beginning of the message reaches the

Server at the downstream node (i.e. it is not Rejected by the

Switch), that Server begins arbitration for its local bus to
complete the transaction. If the device on the downstream node

is locked to a remote bus master other than the Server, the

Server issues a Reject which propogates upstream and is

eventually detected at the upstream Requestor. This Reject is

treated exactly the same by the Requestor as a Reject from the

Switch. Note that this is the ONLY instance in which the

Server will issue a Switch Reject — an Initial Message.

Assuming that the Requestor receives neither a Switch Reject

nor a Server Reject, it deasserts Frame for one switch interval

while it sends the checksum byte. Within the checksum byte, the

"forward" bit is reset. This event would normally cause the

forward drivers of the SGA's to turn off after they send the

checksum byte. However, the current implementation of the SGA

ignores this bit and turns—on its foward drivers in response

to the Frame profile. The Requestor then sends the Pad message

(all O's) and awaits a response from the Server. Note that the
forward bit is not used by the current SGA's.

In the meanwhile, the downstream Server begins processing the

request by arbitrating for the local T—Bus. Assuming that the

target downstream bus slave was not locked to a downstream

master other than the Server, the Server obtains the local

bus and possibly opens the local memory lock. The Server will

open the lock only if this action was requested in the

downstream message. This would occur if the master on the

Preliminary Release Page 9 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

upstream node's l-->cal bus requested an OPEN lock when it

initiated a transaction through it's associated Requestor.

Once the downstream Server obtains the local bus, it makes a

function request to perform the appropriate read or write

operation. The only exception to this is when the Server detects

a checksum error in the downstream message. If this occurs,

instead of making a request, the Server releases control of the

T—Bus, creating a "dead" bus cycle and thereby aborting the

transaction. This action on an aborted transaction should

eliminate any unwanted side-effects if the switch message is

corrupted.

4.2.2 Function Responses

Assuming that a read transaction was requested, the

downstream Server completes the read as a normal local T—Bus

master. As soon as the read data is obtained by the Server, a

message is returned to the upstream Requestor. This happens

(over the same data wires which the downstream message was
sent) by asserting Reverse and applying data to the Switch data
lines. The upstream message contains the read data, and

possible error data; a checksum; and a message

acknowledgement, or M_ACK which is implicit in the assertion

of Reverse for at least two Switch intervals. If a write

transaction was requested, the Server writes the data to

the address specified in the downstream message and sends

back an M_ACK with an error byte data and checksum after the

data has been accepted by the slave on the local T—Bus. In

short, a read returns data/errors and an acknowledgement whereas
a write only returns possible errors and an acknowledgement.

In the case of a read transaction, the upstream Requestor

detects the M_ACK and alerts the local split-cycle master which

initiated the request that the requested data has been returned.

That master then completes the operation by retrieving the

data. In the case of a write transaction, the Requestor also

alerts the initiating local bus master that the write was

completed but returns only error information.

In the absence of errors, the Requestor will continue to hold

the Switch path open by asserting Frame only if the sequence was

initiated with an OPEN. If that master decides to release the

Preliminary Release Page 10 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

lock, the Requestor will tear-down the switch connection by

negating Frame and will enter its unlocked idle state. This

is the state that it was in at the beginning of this

discussion of function requests. If the upstream bus master

does not release the lock, it may initiate another read or

write transaction. This and subsequent transactions are

referred to as locked transactions. Outside of errors,

locked transactions end only when the upstream T—Bus master

which OPENed. MAINTAINed or BYPASSed the SIGA Requestor lock

decides to release that lock with a FREE-LOCKS command.

Subsequent message transactions in a locked sequence differ from

the lmtital transactions described above in three major ways.

First, locked messages do not. contain any bids because the

path has already been established. Second, the Switch will
never issue a Reject because the path has already been

established and :> being reserved for the Requestor. And

third, the downs;ream Server will never issue a Reject

because it will already have exclusive use of the local

memory lock. Aside from these exceptions, subsequent locked

transactions occur in exactly the same manner as unlocked

transactions. As mentioned previously, the upstream T-Bus

master owning the SIGA Requestor MUST release that lock

explicitly with a FREE-LOCKS.

4.3 Basic Message Formats

Message formats differ mainly with the type of function request;
read or write. Within a read or write message, the downstream

and upstream messages corresponding to a function request and

response also differ.

4.3.1 Read Messages

Read message formats differ mainly depending on whether or not
they are downstream or upstream messages.

4.3.1.1 Down s t r e am

Downstream Read messages are differentiated partly because of
their data format and partly because of the state of Frame at the

Preliminary Release Page 11 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

beginning and end of the message. The formats for three possible

SIGA Requestor read operations are considered:

1) An Unlocked Read occurs when the Switch path had
previously been "torn-down".This occurs whenever

Frame was "0" for at least two Switch Intervals.

Once the operation has been acknowledged, the path

is torn—down again.

2) An Initial Locked Read occurs under the same
circumstances as the Unlocked Read except that the

Switch path is held open once the operation has

been acknowledged.

3) A Locked Read is a read which occurs when the Switch
path was already locked and it continues to be

locked after the operation has been acknowledged.

In all cases, the Requestor waits for a Message Acknowledgement

(M_ACK) from the downstream Server before completing the
message. Figure 5 illustrates the three read message types for a

two column switch. In this figure, the "d" field indicates the

direction of the LCON drivers which interface data with the

LCON. When d = "P" (Output), the Requestor is sourcing
data to the Requestor/LCON interface. When d = "I" (Input), the
LCON drivers are sourcing data to the Requestor/LCON interface.
The "f" field is the state of the Frame bit. Data is MSB at the

left of the field.

4.3.1.2 Upstream

When a downstream read message has been received and processed by

a Server, an upstream message is returned to the initiating

Requestor based on the operation requested. Under normal
conditions, the Upstream Message is composed of two parts: the

returned data (with checksum) and the M_ACK (Message
Acknowledge). The returned data is the contents of the remote
memory location read, which can be 1,2 or 4 words in length.
With the exception of rare error conditions, the actual message
data field is almost always a multiple of four.

Preliminary Release Page 12 July 25, 1988

SIGA Specification

Unlocked

Read

d f data

BBN Advanced Computers Irn

Ini t i al

Locked Read

d f data

Locked

Read

d f data

P 0 xxxxxxxx P 0 xxxxxxxx P 1 xxxxxxxx

p 0 xxxxxxxx P 0 xxxxxxxx P 0 xxxxxxxx

p 1 -bidl P 1 -bidl P 1 —cmd

p 1 -bid2 P 1 -bid2 P 1 -addr1—

p 1 -cmd P 1 —cmd P 1 -addr2—

p 1 -addr1— P 1 -addr1— P 1 -addr3—

p 1 -addr2— P 1 -addr2— P 0 —check—

p 1 -addr3— P 1 -addr3— I 1 00000000

p 0 -check— P 0 -check— I 1 00000000

I 1 xxxxxxxx I 1 xxxxxxxx "

I 1 xxxxxxxx I 1 xxxxxxxx M_ACK
" " and read data

M_ACK

and read data

I 0 xxxxxxxx

P 0 xxxxxxxx

M_ACK

and read data

I 1 xxxxxxxx

P 1 xxxxxxxx

I 1 xxxxxxxx

P 1 xxxxxxxx

Read Switch Message Format - Downstream

Figure 5

Figure 6 illustrates the upstream message. The "r" field is the

Reverse signal. Data is MSB at left of the field.

4.3.2 Write Messages

Write message formats differ mainly depending on whether or not
they are downstream or upstream messages.

Preliminary Release Page 13 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

1—word

4—byte

Read

data

0 xxxxxxxx

—data a—

—data b—

—data c—

—data d—

-check—

0 xxxxxxxx

Read Switch Message Format

Figure 6

Up stre am

4.3.2. 1 Downs t r e am

Downstream Write messages are differentiated partly because of

their data format and partly because of the state of Frame at the

beginning and end of the message. The formats for three possible

SIGA Requestor write operations are considered: In all cases, the

Requestor waits for a Message Acknowledgement (M_ACK) from the
downstream Server before completing the message. Figure 7

illustrates the three write message types for a two column

switch. In the figure, The "d" field is the direction of the LCON

drivers which interface data with the SGA. When d = I, the

Requestor is sourcing data to the Requestor/LCON interface. When
d = P, the LCON drivers are sourcing data to the Requestor/LCON
interface. The "f" field is the state of the Frame bit. Data is

MSB at left of the field.

Preliminary Release Page 14 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

1) An Unlocked Write occurs when the Switch path had
previously been "torn—down" by the fact that Frame

was "0" for at least two Switch Intervals Once the

operation has been acknowledged, the path is torn-

down again.

2) An Initial Locked Write occurs under the same
circumstances as the Unlocked Write except that the

Switch path is held open once the operation has

been acknowledged.

3) A Locked Write is a write which occurs when the
Switch path was already locked and it continues to

be locked after the operation has been

acknowledged.

4.3.2.2 Upstream

When a downstream write message has been received and processed

by a Server, an upstream message is returned to the initiating

Requestor based on the operation requested. Under some
conditions, the Server will not act on the downstream message and

will instead send a Reject back to the Requestor. Under normal

conditions however, upstream messages contain an M_ACK, an error

byte (normally all 0's) and a checksum.

The following illustrates the only possible return message for a
write. The "r" field is the Reverse signal. Data is MSB at left

of field.

5 Detailed Functional Description

The Requestor, Server, TCU and Configuration/Status Unit are now
described in detail.

Preliminary Release Page 15 July 25, 1988

SIGA Specification BBN Advanced Compute!

Unlocked

Wr 1 t e

d f data

Initial

Locked.Wri te

d f data

Locked

Write

d f data

I 0 xxxxxxxx I 0 xxxxxxxx p 1 xxxxxxxx

I 0 xxxxxxxx I 0 xxxxxxxx p 0 xxxxxxxx

p 1 -bidl p 1 -bidl p 1 —cmd

p 1 -bid2 p 1 -bid2 p 1 —addr1—

p 1 — cmd p 1 -cmd p 1 -addr2—

p 1 —addr 1 — p 1 —addr1— p 1 —addr3—

p 1 -addr2— p 1 -addr2— p 1 —data a-

p 1 -addr3— p 1 -addr3— p 1 -data b-

p 1 —data a— p 1 —data a— p 1 —data c—

p 1 —data b— p 1 —data b— p 1 —data d—

p 1 -data c— p 1 —data c— p 0 —check—

p 1 —data d— p 1 —data d— I 1 xxxxxxxx

p 0 -check— p 0 —check— I 1 xxxxxxxx

I 1 xxxxxxxx I 1 xxxxxxxx "

I 1 xxxxxxxx I 1 xxxxxxxx M_ACK

M_ACK M_ACK I

p

1

1

xxxxxxxx

xxxxxxxx

I 0 xxxxxxxx I 1 xxxxxxxx

p 0 xxxxxxxx p 1 xxxxxxxx

Write Switch Message Format

Figure 7

Downs trearn

5.1 Requestor

The Requestor is described from the point of view of its overall
operation and its two major interfaces: the T-Bus interface and
the Switch Interface.

Preliminary Release Page 16 July 25, 1988

SIGA Specification BBN Advanced Computer;

Any Wr ite

r data

0 xxxxxxxx

1 —error—

1 —check—

0 xxxxxxxx

0 xxxxxxxx

Write Switch Message Format - Upstream

Figure 8

5.1.1 Operation

The operation of the Requestor is described by discussing its
ma jor functi ons.

5.1.1.1 Overvlew

The Requestor is a local T—Bus slave which creates a logical
coupling to a physically remote T-Bus slave via the Switch.
The Requestor acts as the "initiator" of this coupling on the
Switch and thus can be thought of as a "slave" on the T-Bus but

a "master" to the Switch. Referring to Figure 9, the Requestor

contains three major functional units: Bus Interface Unit (BIU),
Switch Tx Unit (STU), and the Switch Rx Unit (SRU). The BIU is
clocked by the T-Bus clock and both the STU and SRU are clocked
by the Requestor Switch clock (R_CLK). Interfacing of control
signals between these units is accomplished with handshake
synchronizers, as shown. The BIU handles all of the T—Bus
transactions of the Requestor. The STU translates function

requests that it receives from the BIU into Switch
transactions. The SRU receives reply messages from the Switch and

passes their status, in the form of a status code, back to the
STU and their data back to the BIU. The STU serves as the

Preliminary Release Page 17 July 25, 1988

:IGj S v e c i f i c a t i o n

Bus

Interface

Unit

BBN Advanced Computers Inc.

+ +

+ + | I
-1 sync | > |Swi tch |
+ + jTx j >
=============> Un i t ========>

->

h—>

iSwitch
|Rx

IUnit

<

Requestor Block Digram

Fi gure 9

single interface for control information between the T—Bus side
and Switch side of the Requestor and therefore control

information in either direction must pass through the STU.

This is done to reduce the number of control interfaces that the

BIU must deal with.

The BIU/STU interface is a streamlined request/response type
interface where for each BIU request there is an STU response.

The BIU presents an encoded function request to the STU and sets
an "execute" flag. When the STU is done operating on that
request, it sets a "done" flag and returns a status code and data
to the BIU. Both the BIU and STU are responsible for handling

their own functions independently and they have very little
real—time knowledge of each other's state. This approach
simplifies the Requestor design and carries the request/response
philosophy throughout the system.

Preliminary Release Page 18 July 25, 1988

SIGA Spe c 1f1 :: a' 1on BBN Advanced Computers Inc

The BIU has four major responsibilities: (l) screen T—Bus
requests for correctness; (2) transfer screened T—Bus
requests to the STU if a Switch transaction is indicated by

that T—Bus request; (3) receive replies from the STU; and (4)
pass replies, including any errors, as responses to the T—Bus.

The BIU acts as a T-Bus slave which is always in split—cycle

mode. In other words, it NEVER responds immediately to a function

request from a T—Bus master except when a request error is

detected. Outside of those exceptions, the BIU always responds

with a PROMISE to T-Bus requests.

The BIU screens T-Bus requests for both T—Bus protocol

violations and illegal function requests. Without exception,

these conditions will prevent the BIU from ever activating the

STU to complete an initial function request. The BIU can also

initiate certain function requests to the STU independently of

T-Bus requests. An example of this is the drop-lock function

which may under certain conditions be initiated by the BIU rather

than the T-Bus.

The STU acts on a function request from the BIU and initiates

the Switch transaction to carry out that request. The STU

also is responsible for assembling and transmitting the data in
an outgoing message. It also handles things such as the message

start/retry and priority promotion algorithms and deals with

various protocol timeout violations.

The SRU is fairly simple in function. It detects the return
message of a function request inititated by the STU, verifies
the checksum and alerts the STU of the incoming message and the

checksum status. The SRU also detects Switch Rejects.

5.1.1.2 RTC and related functions

The Real Time Clock, besides being useful as a system

timekeeper, is central to the operation of much of the Requestor.
It is used to directly control the functions of the

Time_Of_Next_Interrupt and the Priority_Time_S1ot mechanisms.
These mechanisms are described in this section. The RTC is

also used, in a less direct manner, to control the Protocol

Timers. Protocol timers are discussed elswhere in this

document.

Preliminary Release Page 19 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

5.1.1.2.1 Real Time Clock and Prescaler

The RTC is basically a large (32 bits) counter which is
updated every one microsecond from a divided—down version of

the Switch clock. Since the frequency of the Switch may vary
in different applications, the Real Time Clock uses a

programmable prescaler to divide the Switch frequency down to a

one microsecond time base. A functional diagram of the Real

Time Clock is shown in Figure 10.

Real Time Clock | |—Prescaler —

-RTC. Hi I j RTC.Lo I I RTP

+ + + +-+ H h

16 j | 16 |< o|l|<-h| 5 |
1 h + c h +c + + c-+

t T t t

-+-

+ h

|de1 ay|<—M_SIXTY_FIVE
+ +

...where,

h = increment pulse (period = 0.5 us)
o = increment pulse (period =1.0 us)
s = increment pulse (period = 65536 us)
c = clear input

i = increment input

Functional Diagram — Real Time Clock

Figure 10

Figure 10 shows that prescaler is actually composed of two

parts. The first part is a count—up prescale counter that has

Preliminary Release Page 20 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

a programmable terminal count value. This 5—bit terminal value

is supplied by the Real__Time_Prescal e subfield of the ConfigA

register (REQ_ConfigA.Real_Time_Prescale). The 5—bit counter
drives the second part of the prescaler: a divide—by—two.

The divide-by-two then generates the one—microsecond time base

used by the Real Time Clock. Figure 10 also shows the presence

of the M_SIXTY_FIVE signal. This signal is a system—wide pulse

which occurs every 65 milliseconds and lasts for one Switch

Interval It is used to keep all the Real Time Clocks on all

nodes in synchronization.

The M_SIXTY_FIVE resets the entire prescaler and the the

lower-half of the Real Time Clock. In addition, it increments

the upper—half of the Real Time Clock. Figure 10 also shows a

"pipeline' delay for the M_SIXTY_FIVE signal. The
Configuration bits, REQ_CcnfigA.Sixty_Five_De1ay<l..0>, allow the

adjustment of this delay The adjustment values and their effects

are shown in Figure 11.

WARNING: The setting DD = 00 is for test purposes only and must

NOT be used in normal operation.

DD De1 ay

00 none

01 1 Switch interval

10 2 Switch intervals

11 3 Switch intervals

. . .where.

D. D = ConflgB.Sixty_Five_Delay<l..0>

Si >:ty_Fi ve_Del ay Settings

Fi gure 11

In actual operation, the prescaler RTP<4..0> counts-up at the
Switch frequency until it reaches the count stored in
REQ_ConfigA.Real_Time_Prescale, where it generates an increment
pulse lasting one Switch Interval. In the next Switch clock

Preliminary Release Page 21 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

interval, the prescaler rolls—over to zero. Thus,

the ConfigB.Real_Time_Prescale must always be programmed to

make RTP<5> have a period of 0.5 microseconds.

WARNING: Because of hardware speed considerations, the OMSP

generated by the RTP is actually pipelined by one Switch

Interval. Therefore, the RTP appears to be running "ahead" of

the RTC by one Switch interval. This fact only becomes

signifcant for the Slotted Start/Retry criteron. See that
section for further details.

The Real Time Clock is basically, as mentioned previously, a

large counter. The register definition of the Real Time Counter

is shown in Figure 12.

Register: Real_Time„C1ock<31..0>

31 0

I I
15 0 15 0

HHHHHHHHHHHHHHHH LLLLLLLLLLLLLLLL

[Hi] [Lo]

.. where,

H..H = high—order value (in 65,536 us)
L..L = low—order value (in 1 us)

Register Definition — Real_Time_Clock

Figure 12

Referring to Figure 12, both the upper and lower-halves of the
Real Time Clock (RTC.Hi) can be both written to and read from
during actual operation.

WARNING: Any reads of the RTC must be taken as needed. This

means that if the entire 32 bits must be read, it should be

done in a single word—mode operation. Performing this same

function with two serial half—word operations will yield

incorrect results. In addition, any reads of the Real Time

Preliminary Release Page 22 July 25, 1988

SIGA Specification BBN Advanced Computers In<

Clock have an uncertainty of approximately one microsecond.

For writes, ONLY the half—word mode is acceptable for loading a

value into the RTC.Hi or RTC.Lo register. This operation

should only be attempted after reading the half-register

of the RTC and determining that it will not overflow when the

write is being performed.

When performing reads of the Real Time Clock, the

Configuration/Status Unit must take some special action to ensure
that the read data is valid (stable). This is required because
the Switch and T-Bus clocks are not always ensured to be

synchronous and thus the Real Time Clock may be advancing as it

is being read. The CSU accomplishes this goal in the following

manner:

When a read request for the Real Time Clock is detected by the

CSU, the CSU immediately asserts the external SIGA pin.

T_NSPAUSE_SIGA, and sends a request across a handshake

synchronizer to the RTC controller logic. The RTC

controller logic then waits for the next occurence of the one

microsecond increment pulse from: Real_Time_Prescaler<4>. When

this occurs, the CSU is ensured of having a stable reading

from the Real Time clock for at least one microsecond. The

RTC controller logic then sends an acknowledgement back

across the handshake synchronizer where the CSU, upon detecting

this event, negates T_NSPAUSE_SIGA and allows the data to

be read. This is what contributes to the one microsecond

uncertainty mentioned above.

WARNING: The CSU relies on the fact that the requesting T-Bus

master will ensure that the total time — from the next

occurence of the one—microsecond increment pulse to the reading

of data — will take no more than 1 us. This time includes the

synchronizer delay from the RTC controller, the response time

of the CSU, and time for any pauses that the T—Bus master may

assert. Excluding the assertion of those pauses

(T_NMPAUSE_xxxx) from the T-Bus master, the delay in the SIGA
will be: 2*p(R_CLK) + 6*p(T_CLK) nanoseconds. The "p"
represents the period of the indicated clock in
nanoseconds. Therefore, the T-Bus master should use EXTREME

caution when causing the assertion of T_NMPAUSE_xxxx. Beyond

that, the CSU cannot guarantee the accuracy of the read data!

Preliminary Release Page 23 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

5.1.1.2.2 Time Of Next Interrupt

The Time Of Next Interrupt or TONI registers, are two 32-bit

registers (A and B) which in combination with the Real Time
Clock, are used to schedule an interrupt to occur at some

moment in the future. Both registers, and their associated

control logic, are completely independent from each other

although they both interact with the Real Time Clock.

The TONI control logic performs a 32—bit subtraction between

the current TONI_A (TONI_B) register values and the value of
the entire Real Time Clock each time the OMSP is valid.

Whenever this subtraction yields a negative (two's—comp1ement
form) number, the SIGA sets (=1) the bit:
TON IA_Config.Status (TONIB_Config.Status).

Normally, whenever time the Status bit is asserted. an
external pin, M_TONIA_INT (M_TONIB_INT), is also asserted (=1).
This can be enabled/disabled — asynchronously to the OMSP

by setting the TONIA_Config.Enable (TONIB_Conflg.Enab1e)
bit to a 1/0. Disabling will force ONLY the pin to a "0." The
associated status bit will still reflect the result of the

current subtraction. Figure 13 illustrates the TONI register

de f ini t i on.

Register: Time_Of_Next_Interrupt

31 0
rp rp rp rp rp rp fp rp fp rp it* *p rp rp rp rp rp rp rp 'T,*T* *¥* f 'T1TT* HP '"P fT* TT* TT% T^ T*

...where,

T..T = interrupt value

Register Definition - Time_Of_Next_Interrupt
Figure 13

Figure 14 illustrates the TONIA(B) configuration register
def ini t i on.

Preliminary Release Page 24 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Register: TONIA(B)_Config"

31 0

E (wr1t e)
SE (read)

...where,

E = asynchronously enable external pin

= 0 disable M_TONIA(B)_INT external pin
= 1 enable M_TONIA(B)_INT external pin

S = status

= 0 TONIA(B) interrupt is not active
= 1 TONIA(B) interrupt is active

Register Definition - TONIA(B)_Config
Figure 14

The actual subtraction that is performed to initiate the

interrupt is shown in Figure 15.

TONIA(B)_Config<l> = 1 IFF,

(T0NIA(B)<31..0> - RTC<31..0>) < 0

...where TONIA(B) and RTC are treated as unsigned
32—bit numbers and the difference is treated

as a two's—complement number.

Rule — Time of Next Interrupt Calculation

Figure 15

When performing writes to the TONI register, the
Configuration/Status Unit must take some special action to ensure
that the TONI register is not updated in the middle of the

Preliminary Release Page 25 July 25, 1988

jA Specification BBN Advanced Computers Inc

difference operation. The CSU accomplishes this goal in the

following manner:

When a write request for the TONI register is detected by the

CSU, the CSU immediately asserts the external SIGA pin:

T_NSPAUSE_SIGA and sends a request across a fixed—delay handshake

synchronizer to the TONIA(B) controller logic. The TONIA(B)
controller logic then waits for the next occurance of the OMSP

before it actually loads the TONIA(B) register. Because of
pipelining, the TONIA(B) Subtraction Unit is ensured of having
exactly one microsecond in which to complete the subtraction.

The TONIA(B) controller then sends an acknowledgement back
across the handshake synchronizer where the CSU, upon

detecting this, negates T_NSPAUSE_SIGA, thus freeing-up the

T-Bus master. This means, of course, that the SIGA will

assert T_NSPAUSE_SIGA for approximately one microsecond.

5.1.1.2.3 Priority Time Slot

The Switch protocol provides a mechanism by which initial

messages may be transmitted at various levels of priority in

order to place an upper bound on remote access time.

Normally, this priority is set by the T-Bus bits,

T_PRI0RITY<1..0>, during the request phase of the T-Bus

transaction. In this case, the initial message is

transmitted/retransmitted with the priority set during the T-

Bus transaction which initiated the message. However, the

Requestor can also force these bits to their EXPRESS value

independently of the T—Bus transaction via the Priority Time

Slot mechanism.

This mechanism works by assigning each Requestor a particular

active time slot which is based on the value of the Real Time

Clock. When that time slot "arrives," any pending Intital

Switch message in the Requestor will have its priority raised to
the EXPRESS level (=00). The priority is "sticky" in that once
raised to EXPRESS, it remains there until the T-Bus

initiates a new Initial Switch message. This new Intital

message updates the priority with the value of

T_PRI0RITY<1..0>, as normal.

The equation for determining the active Priority Time Slot is
shown in Figure 16. This equation takes a slot value

Preliminary Release Page 26 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Priority Time Slot is active IFF the equation,

(RTC.Lo<15..0> !$ PTC.Slot<15..0>) # PTC.Mask<15..0>

...is all 1 's

Rule — Priority Time Slot Promotion

Figure 16

(PTC.Slot), compares it on a bit—by—bit basis with a portion of

the Real Time Clock (RTC.Lo) and then logically "or's" the
result with the priority slot mask (PTC.Mask). It then detects
the result for the presence of all "l's." Essentially, the

RTC.Lo and the PTC.Slot are compared for equality on a word

basis with some of the bits excluded, or "don't cared," in the

comparison. A given bit position is excluded by setting the

corresponding bit position in the Mask subfield to a "1". The

Mask and Slot subfields, which are defined in Figure 17, are

programmable via the Configuration/Status Unit. The Priority Time
Slot function can be disabled so that it NEVER promotes the

priority of any message by negating (=0) the
ConnfigB.Ena_Priority_Promotion bit. The fully programmable

capability of the Priority Time Slot allows the slot to be valid

at different nodes in almost any order. It also allows the period

of occurence of the slot at a given node to be adjusted from

constant up to 65 ms. Of course, the minimum time that a "slot"

can be active at a given Requestor is one microsecond. Note that

it is possible for the "slot" to arrive while the Requestor is

sending out bids. This could result in one Bid being sent at

Tower priority and the remaining bid(s) sent at EXPRESS priority.
However, logic in the Requestor ensures that no updating of

priority occurs DURING Bid transmission. In addition, no updating
will occur while the Requestor is either "idle" or "waiting." The
"waiting" state is where the Requestor STU is waiting for a
slotted/random start criterion to become valid.

Note that the purpose of the Priority Slot Value is NOT to
ensure that a single high priority message be present in the
Switch at any given time. Rather, the goal is to define the

Preliminary Release Page 27 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Register: Priori ty_Time_Conf ig<31. .0>

31 0

I I
15 0 15 0

SSSSSSSSSSSSSSSS MMMMMMMMMMMMMMMM

[Slot] [Mask]

where,

S..S = slot value

M..M = mask value

Register Definition - Priority_Time_Config

Figure 17

maximum bandwidth of priority messages to make the servicing of

these messages as predictable as possible. In addition, the

Priority Time Slot mechanism only applies to Initial Switch

Messages (locked or not), which are always attempting to make
a connection with some downstream node. Subsequent messages

do not send Bids and thus are not affected by the Priority

Time Slot mechanism.

5.1.1.3 Function Request Types

The Requestor handles various types of function requests from a
T-Bus master. Those functions include read and writes of either

bytes, words, or multiple words. Byte reads/writes may be of one
to four bytes but must NOT wrap across word boundaries.

WARNING: It is important not to violate word wrapping because
the Requestor does NOT check for this condition. Word
reads/writes MUST be word-aligned and multiple read/writes are
limited to a maximum of four words.

Preliminary Release Page 28 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

5.1.1.4 T—Bus Request Screening

T-Bus requests to the BIU of the Requestor are screened for
both context errors and T—Bus protocol errors before any action

is taken on them. Protocol errors include such things as a

T-Bus master requesting an illegal (=00) T_PRIORITY field or
illegally wrapping across word boundaries. Currently, protocol
errors are NOT detected. Context errors, mostly relating to

errors in handling locking, are listed in Figure 18.

1) Requestor was asked to access a node within a locked

sequence which is different than the node which

opened that sequence. (Lock Address Error)

2) Requestor was asked to MAINTAIN a remote lock when it
was never opened (Maintain Present Error)

3) Requestor was not asked to MAINTAIN, BYPASS or OPEN a
lock that was not yet explicitly released with

FREE-LOCK. In other words, a NORMAL was issued

while the Requestor was locked. (Maintain Absent
Error)

Requestor T—Bus Screening Errors

Figure 18

Any of these errors will cause the Requestor to return an ERROR
response with the appropriate error code on the T—Bus
(See: "Error Detection and Reporting"). In addition, no
Switch message will leave the STU. If the Switch path
happens to be locked, any of these errors will also cause the
BIU to initiate a sequence which will tear-down the Switch
path (drop—lock) providing certain conditions are met. See
"Locked Sequences" for more details.

NOTE: The Requestor, if unlocked, will treat a BYPASS in the same
manner as a NORMAL Function Request; that is, it wi11 NOT open a

1 ock .

Preliminary Release Page 29 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

5.1.1.5 Initial Message Start/Re try Criterion

The Requestor can use one of several different methods to decide

when to first begin transmission of an Initial Message and when

to retry that transmission if the Switch rejects it. These

methods are refered to as: slotted, random and immediate. The

start transmission time can be programmed to correspond to

either one of two fixed time slots, one of two random numbers,

or immediate transmission. The retry can correspond to either

one of two fixed time slots or one of two random numbers. Only

some combinations of these start and retry criterion are

available for a given initial message.

The operation of random and slotted start and retry are

described first. The process of selecting the various

random/slotted start and retry criterion for a given message is
then explained.

5.1.1.5.1 Random Start/Retry

There is a random number generator associated with the

start/retry criterion. The generator is 12 bits long and is
continuously updated at the Switch frequency. Each time an

initial message start/retry occurs and the random backoff is

selected, a new random number is transfered from the generator to

a 12-bit count—down counter. This counter, known as the

backoff counter, also runs at the Switch frequency. When the

backoff counter reaches -1, the Requestor is released to

start/retry the initial message transmission.

Before the backoff counter is actually loaded with the random

number, that number is logically "anded" with a 12—bit backoff

mask. When the Requestor first attempts the start/retry of an
initial message, the backoff mask is initialized, forcing some

number of most significant contiguous bits of the random

number to zero as they are loaded into the backoff counter.

After a certain number of Switch rejects for the same initial

message, the mask is "shifted left" to allow an increase in the

maximum allowable value of the next 12-bit random number loaded

into the backoff counter. Thus, the random backoff limit, in

terms of Switch intervals, is a binary number of length 12, or

4096. Each time a Switch reject is encountered, the Requestor

makes a decision about whether or not to shift the backoff mask.

Preliminary Release Page 30 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

That decision is made by adding a constant number to an

accumulator after each Switch reject. Each time the

accumulator overflows, the mask is shifted. Therefore, the mask

may not change for several rejects.

In implementation,

characteristics for

register is dup1ic

characteristics to

for choosing one s

subsequent section,

the initial mask set

addition and whethe

These rrequested.

whi ch

Transmit_T

"Randoml".

registers .

a register specifies randomization

the random start/retry criterion. This
ated to allow for two sets of

be stored simultaneously. The mechanism

et or the other is described in a

Each register is 8 bits long and specifies

ting, the constant value for accumulator

r or not immediate start transmission is

egisters, and the random specifications

they describe, are subfields of the

me__Config Register known as "RandomO" and

Figure 19 illustrates the structure of the random

Regi ster: Transmi t_Time_Conf ig.Random0<7. .0>,

Transmi t_Time_Conf ig.Randoml<7. .0>

0

IMMMMMEE

where,

I = immediate

EE = accumulator addition constant

MMMMM = initial comparison mask

Register Definition - Transmit_Time_Config.RandomO,1

Figure 19

Referring to Figure 19, the immediate field, "I", when "1",

forces an initial random start to be immediate, ignoring any

randomization parameters. For initial retries, the "I" field is
ignored and the randomization parameters are always used. The
constant value for accumulator addition is specified by the "EE"

field. This number is added to a 3—bit accumulator, which is then

Preliminary Release Page 31 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

tested for overflow. The initital backoff mask is specified by

the 5—bit identifier, "MMMMM", which is loaded directly into a

Johnson Counter. The output of the Johnson Counter is decoded to

derive a 12-bit backoff mask as shown in Figure 20.

mcr eas l nr

count

mask

ident i f i er<5. .0>

000000

000001

000011

000111

001111

011111

1 1 11 11

111110

111100

111000

110000

100000

backoff mask<l1..0>

00000000000

0000000000

000000000

00000000

0000000

000000

000001

000011

000111

001111

011111

111111

Random Start/Retry Bit Mask Encoding
Figure 20

Figure 21 also shows how the counter advances once loaded with an
initial value. This advancment, of course, is governed by the

overflow of the 3—b1t accumulator. Also note that the LSB of the

backoff mask can never be cleared.

During the INITIAL start/retry, five of the mask identifier
bits related to the initial message are specified by the "MMMMM"

field in the random register. The sixth, most significant bit is

ALWAYS initialized to "0". So, if MMMMM = "11111", the initial

backoff identifier would be: "011111". In this case, the maximum

possible random backoff is "1111110", or 128 Switch
intervals (recalling that the backoff counter overflows at —
1). Once the maximum identifer of "100000" has been
reached, the counter "wraps around" and thus the next backoff
mask will be "000000". The "multiply by two" effect of the

Preliminary Release Page 32 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

1eft—shifting backoff mask is intended to implement an

exponentially increasing random backoff. An equation

summarizing the preceeding discussion is shown in Figure 21.

WARNING: The initial mask identifier MUST be a value which would

result in a legal Johnson Counter value as shown in Figure 20.

Legal Values would be: "00011" or "01111" for example. Illegal

values would be: "00100" or "10110", for example.

[M + mt(R*E/8)]
Maximum backoff (Switch intervals) = 2

. . .whe re ,

M = initialized value of MMM bits

R = number of rejects

E = value of the EE bits

Equation — Maximum Exponential Random Backoff

Figure 21

5.1.1.5.2 Slotted Start/Retry

Slotted start and retry involves holding—off transmission

based on the "arrival" of a pre—specified time slot. Once a

slot has "arrived," a message assigned to that slot for

starting can start transmission, and a message assigned to

that slot for retry can retry transmission. The time slots are

derived from the the comparison of the Real Time Clock and a

register used to specify the slot characteristics. This
register is duplicated to allow for two sets of characteristics
to be stored simultaneously. The mechanism for choosing one

set over the other is described in a subsequent section. Each

register is 8 bits long and specifies the comparison mask,
the comparison value, and whether or not immediate start

transmission is requested. These registers, and the slot
specifications which they describe, are subfields of the
Transmit_Time_Conflg Register known as "SlotO" and "Slotl".

Preliminary Release Page 33 July 25, 1988

UGA Specification BBN Advanced Computers Inc.

Figure 22 shows the structure of the slot registers

Register: Transmit_Time_Config.S1ot0<7..0>,

Transmit_Time_Config.Slotl<7..0>

7 0

IMMDDDDD

where,

I = immediate

MM = mask specification

00 4.0 us slot period

01 2.0 us slot period

10 1.0 us slot period

11 0.5 us slot period

DDDDD = phase specification (restricted, see text)

Register Definition — Transmit_Time_Config.SlotO,1

Figure 22

Referring to Figure 22, the slot register contains three sub-

fields: the compare mask field, specified by the two bit

number, "MM", the compare data field, specified by the five bit

number, "DDDDD"; and immediate field, "I". The immediate

field, when "1", forces an initial slotted start to be

immediate, ignoring any slot parameters. For initial retries,

the "I" field is ignored and the slot parameters are always

used. The comparison for an active slot is made partially by

comparing bits of the "D" sub—field with bits of the of the Real

Time Clock and Real Time Prescaler. The "M" sub—field is used

to either compare some of those bits with zeros or to ignore

them in the comparison. This operation is shown in Figure 23.

Referring to Figure 23, the D field can only take on values that

are less than or equal to the setting of the

Real_Time_Prescaler<4..0>.

WARNING: Values outside this range may cause the message

to never be transmitted, and are therefore illegal.

Figure 23 also demonstrates the two properties of the slots:

Preliminary Release Page 34 July 25, 1988

SIGA Specification BBN idvaneed Computers Inc

given, nnnnnnnn = RTC.Lo<1..0> | RTP<5..0>

mm compare with cycle period

00 000DDDDD nnnnnnnn 4 us

01 X00DDDDD nnnnnnnn 2 us

10 XXODDDDD nnnnnnnn 1 us

11 XXXDDDDD nnnnnnnn .5 us

Rule — Start/Retry Valid Slot Comparison
Figure 23

frequency and phase, the D field allows setting a number of

phases equal to the setting of RTP<4..0> plus one. the M field

allows the comparison to occur at varying time intervals.

Because of hardware limitations, the concatenated quantity,

(RTC.Lo<l..0> | RTP<5..0>), does not act exactly like an eight
bit counter, the RTP portion is actually running one switch

interval "ahead" of the RTC.Lo<1..0> portion. This means that

the RTC actually increments on the 000000-to-000001 transtion

of the RTP portion, rather then on the 11111l-to-000000

portion. A sample transition would look like that in figure 24.

5.1.1.5.3 Start/Retry Criterion Selection

A function request from a master on the T—Bus is transformed

into a Switch message by the Requestor. Depending on certain

parameters of that function request, the Requestor
categorizes the message into one of four Message Classes.
Each of these classes will have a different start and

retry criterion. The correspondence of start/retry criterion
based on message classes is shown in Figure 25. A class is

selected for each Switch message based on the state of three

bits of T—Bus function request that initiated the message. Those

bits are the T-Bus signals T_L0CK0P<1> and T_RR<1..0>. The

Requestor uses the encoded state of those three bits to "look

Preliminary Release Page 35 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

RTC.Lo<l..0> RTP<5..0>

10 11111100

10 11111101

10 11111110

10 11111111

10 00000000

11 00000001

11 00000010

11 00000011

Start/Retry Slot Comparison Count Sequence
Figure 24

Class Start Retry

00 SlotO/Immediate SlotO
01 Slotl/Immediate Slotl
10 RandomO/Immediate RandomO
11 Randoml/Immediate Randoml

Start/Retry Criterion based on Message Classes
Fi gure 25

up" the class of the message. The lookup table itself is a
16—bit register known as the Message_C1 assification Register.
This register is defined in Figure 26. To illustrate the
Message Start/Retry Criterion selection with an example,
suppose that a function request to the Requestor may have set,
(T_LOCKOP<l> | T_RR<2..0>) = 100. From Figure 26, this would
cause the Requestor to look in the Message Classification
register "D" subfield (for Locked Writes). In this subfield,
the Requestor would find the "class of message" corresponding

Preliminary Release Page 36 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

Register: Message__C 1as s ificat ion<15 ..0>

15 0

I I
10 10 10 10 10 10 10 10

CC CC CC CC CC CC CC CC

[A] [B] [C] [D] [E] [F] [G] [H]

.where given that nnn = T_L0CK0P<1> | T_RR<1..0>,
the subfields selected and the type of function

request that selects them are,

nnn Subfleld

000 MC.H

001 MC G

010 MC F

011 MC E

100 MC D

101 MC C

110 MC B

HI MC A

Function Request

Unlocked Writes

Unlocked Reads

Auxilliary Unlocked Writes

Auxilliary Unlocked Reads

Locked Wr i tes

Locked Reads

Auxilliary Locked Writes

Auxilliary Locked Reads

Register Definition — Message_Classification
Figure 26

to the particular function request. If the "D" subfield were
a "10", that particular message would have use the parameters in
RandomO register for both message start and retry.

Both the Start/Retry Random and Start/Retry Slot registers are
actually subfields of the Transmit_Time_Config Register. The bit
definition for this register is illustrated in Figure 27. NOTE:
Function requests can be forced to completely ignore the
Message Classification register on a request-by—request basis.
This occurs whenever a request is made and the T—Bus signal:

Preliminary Release Page 37 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Reg 1ster : Transmi t__Time_Conf 1g<31 ..0>

31 0

I I
7 0 7 0 7 0 7 0

IMMMMMEE IMMMMMEE IMMDDDDD IMMDDDDD

[Randoml] [RandomO] [Slotl] [SlotO]

...where, RandomO, Randoml, SlotO and Slotl

are previously defined

Register Definition - Transmit_Time_Config
Figure 27

T_SYNC is asserted (=1). In this case, the message is
automatically classed as "00" and both initial transmission and

retry criterion is taken from the Transmit_Time_Config.SIotO
reg ister .

5.1.1.6 Switch Tx Protocol Timers

The Requestor contains timers which monitor the progress of

the transmitted message and alert the Requestor if they

detect an error condition. Specifically, there are two

timers, the Reject Timer and Connection Timer. The Reject Timer

determines how long the Requestor will attempt to open a Switch

path in the face of Switch rejects. The Connection Timer monitors

how long the Requestor will keep a Switch path open once the

rejection period is finished. Parameters for both the Reject

Timer and the Connection Timer are contained in the

Protcol_Timer_Config Register.

5.1.1.6.1 Reject Timer

The Reject Timer is enabled at the beginning of the first attempt

to transmit an initial message. Each time the Requestor

receives a reject, it first examines the Reject Timer. If the

Preliminary Release Page 38 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

timer has underflowed (the underflow is latched), the
Requestor halts the transmission attempt and returns the Rej_TO
Error code to the T-Bus master. The Requestor also tears—down the

Switch path whether or not it was locked. Parameters for the

Reject Timer are located in the Protocol_Timer_Config Register.

The Reject Timer is structured as a 4—b1t down-counter clocked by
a selectable prescaled time base. The reload value for

the counter is contained in Protocol_Timer_Conf1g.Cnt<3..0>.

A 4—bit prescale parameter, located in

Protocol_Timer_Config.Pre<3..0>, is used to select the desired

prescale time base from one of sixteen possible frequencies.
Those frequencies are derived from the low—to-high

transition of bits of the real time clock,

Real_Time_Clock.Lo<15..0>, as illustrated in Figure 28.

PRE Q PRE

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

..where,

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

PRE = Protocol_Timer_Config.Cnt<3..0>

Q = selection from Real_Time_C1ock.Lo, bit Q

Reject Timer Prescale Selection
Figure 28

The Reject Timer is continually loaded with TPC.Cnt<3..0> until
it begins transmitting Bid #1. An equation for the maximum
Reject timout is shown in Figure 29.

Preliminary Release Page 39 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

glven,

CNT = Protocol_Timer_Config.Cnt<3..0>

PRE = Protocol_Timer_Config.Pre<3..0>

...then,

(PRE + 1)
Timeout = CNT * 2 microseconds

(PRE + 1)
.. with an uncertainty of 2 microseconds

Equation - Reject Timeout

Figure 29

5.1.1.6.2 Connection Timer

The Connection Timer is loaded each time the Requestor sends Bid

1. This means that it is reloaded both juse before transmitting

an initial message and after the Requestor receives each
Switch reject. Like the Reject timer, its underflow

condition is latched.

The Connection Timer's timeout has two different effects

depending on when it occurs. If the timeout occurs while
the Requestor is waiting for a message acknowledgement (M_ACK),
the Switch path is torn—down (whether locked or not) and a
Conn_TO Error is returned to the T-Bus master. If the timeout

occurs while a Switch path is locked, but after the M_ACK was
received, the Requestor will teardown the Switch path but
cannot return an error to the T-Bus master immediately. Rather,

it waits until the next T-Bus master makes a request to return

a Wait_TO Error. In the "race condition" case where the
M_ACK and connection timer underflow occur on the same clock
edge, a Conn_TO Error is detected.

The Connection Timer is structured as an 8-bit down-counter

clocked at 1 Mhz by a bit from the Real Time Prescaler,

Preliminary Release Page 40 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

Real_Time_Prescale<5>. The counter underflows at —1. The

reload value for the counter is contained in,

Protocol_Timer_Config.Con<7..0>. The equation for the

maximum connection timeout is shown in Figure 30.

given,

CON = Protocol_Timer_Config.Con<7..0>

then ,

Timeout = CON + 1 microseconds

with an uncertainty of 1 microsecond

Equation — Connection Timeout

Figure 30

5.1.1.6.3 Protocol Timer Programming

As previously mentioned, the parameters for the Protocol Timers
are contained in subfields of the the Protocol_Timer_Config

Register as shown in Figure 31.

5.1.1.7 Anticipation Support

The operation of the Requestor has two main goals: (1) to
pass a T-Bus function request to the Switch as quickly and
efficiently as possible, and (2) to return the corresponding
function response from the upstream Switch message to the T-Bus
master as quickly and efficiently as possible. Certain techniques
can be used to take advantage of the expected operation of the
logic in the function request and response path. These techniques
are known collectively as "anticipation". The use of
anticipation in achieving the two main goals of the Requestor
are now discussed.

Preliminary Release Page 41 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Register: Protocol_Timer_Config<l5..0>

15 0

I I
3..0 3..0 7 0

CCCC PPPP NNNNNNNN

[Cnt] [Pre] [Con]

...where, Cnt, Pre and Con have

been previously defined.

Register Definition - Protocol_Timer_Config
Fi gure 31

5.1.1.7.1 Function Requests

Maximizing downstream function request efficiency in the
Requestor involves balancing the desire for speed with the
desire to maintain a streamlined Switch protocol. These

tradeoffs become apparent when considering a multi-word write
sequence. Here, the Requestor could signal its Switch Transmit
Unit to begin transmitting as soon as possible after
receiving the T-Bus request. This would always work if the T-
Bus were guaranteed to supply all words of a multi-word
transfer at a bandwidth equivalent to the bandwidth of the
Switch. However, this will not always be the case as the
variations between the clock frequency of the T-Bus and the
Switch, combined with the ability of the current T-Bus
master to assert PAUSE, create the possiblility of the STU
"running out of data" in some circumstances.

To circumvent this problem, two immediate options are
available. First, change the Switch protocol to allow the
insertion of "null data word" fields when data is not
available. Second, the Requestor could be programmed to
signal the STU to start only after a specified number of
words have been written during the data portion of the T-Bus
transfer. The first alternative is unattractive because it

Preliminary Release Page 42 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

increases Switch bandwidth and unnecessarily introduces

complexity into the Switch message protocol. The second option

is therefore implemented in the Requestor. The programmed

parameter is known as, FQ_Anticipation, and can be set to any of

the thresholds listed in Figure 32.

Register : Requestor_ConfigA.FQ_Ant ic ipat ion<2. .0>

210 Ant icipat ion

000 after first data word transfered

001 after second data word transfered

010 after third data word transfered

011 after fourth data word transfered

IXX immediately after T-Bus request

Register Definition - Requestor_ConfigA.FQ_Anticipation<2..0>

Figure 32

Since it is possible for the FQ_Anticipation to be set greater

than the last word of a particular write, the Requestor will

commit to transmission when either the last word has been

written OR the Requestor FQ_Anticipation threshold has been
reached — whichever occurs first. For example, if

FQ_Anticipation were a "011" and a three word write occured,
anticiaption would take place after the third word were
written. In addition, an Interleaved request

(J._INTERLEAVED=1) will cause a "IXX" setting to signal the STU in
the cycle AFTER the T-Bus request. The threshold should be set
based on the T-Bus and Switch clock frequencies, the

maximum number of PAUSE assertions expected during a write,

and the handshake synchronizer delay setting.

NOTE: For MOST applications, where no T-Bus master accessing the
Switch will assert its T_NMPAUSE_xxxx, use the

FQ_Anticipation=lXX setting.

Preliminary Release Page 43 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

5.1.1.7.2 Function Responses

Anticipation during function responses would allow the

Requestor to take advantage of the synchronizer settling time

by beginning the T—Bus request BEFORE the message checksum has

been verified. Unfortunately, the Requestor is limited in the

amount of anticipation that it can provide Whatever

anticipation the Requestor can extract from an upstream

message, that anticipation has to be constant over all

messages. This is because the Requestor STU-to—BIU handshake

synchronizer has to compensate for message anticipation and

cannot have its setting varied according to the expected

upstream message type. And of course, even if the anticipator

could vary its setting, the return message profile is not always

known.

In fact, the Requestor SRU must assume a minimum expected

upstream message length before starting anticipation. That

minimum message length is two bytes. And since the SRU cannot

tell if the assertion of Reverse is a Reject until the second

byte, the minimum anticipation of the Checksum byte is one

Switch Interval (for a function response to a write
request). This then limits anticipation of all messages to one
byte. By comparison, the Server has a minimum message length of

5 bytes and can thus take greater advantage of anticipation

techni ques.

As previously mentioned, Switch to T—Bus anticipation usually
requires some minimum setting on the receiving T—Bus
synchronizer. However, it turns out that no MINIMUM setting
of Req_ConfigA.BIU_Synch<3..0> is required to compensate for
the small amount of Requestor SRU anticipation. This is because

pipeline overhead already accounts for this anticipation.

However, a minimum setting IS required to meet the minimum

settling time for the synchronizer. Fore more details on this
subject, see: "Special Topics/Synchronization."

5.1.1.8 Locked Sequences

Sometimes an upstream T—Bus master wishes to perform several
consecutive function requests to a locked remote T—Bus slave
without the overhead of opening the Switch connection before

Preliminary Release Page 44 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

each request. A mechanism known as Switch locking allows such

multiple accesses by keeping the Switch path open between

function requests. All transactions that take place during

locking are known as locked sequences A locked sequence has

three distinct events: opening, maintaining and closing. Each

of these events has different characteristics and restrictions

for the Requestor.

5.1.1.8.1 Opening and Maintaining Locks

Opening a Switch lock begins with an otherwise normal function

request from a T-Bus master that carries with it a request for

"opening a lock' to a remote T—Bus slave. The upstream

Requestor transfers the OPEN lock request to the downstream

Server via a bit in the message protocol. Since the Switch path

has not yet been established. either the Switch or the

downstream Server may reject the message. A Switch reject

will occur because of normal Switch contention and the Server

reject will occur if the downstream target was locked. The
Requestor, not knowing the source of the Switch reject, will
simply retry the message transmission within the constraints of
the Protocol Timers.

Assuming that the message finally does "get through" to the
downstream Server, that Server "opens a lock" to the target

T—Bus slave in accordance to the T—Bus protocol. Meanwhile the

upstream Requestor, recognizing that it has established the
beginning of a locked sequence, does not normally tear-down
the Switch connection upon receiving an M_ACK unless an error

was detected. This is discussed in detail in the "Auto Drop"

sect i on.

Once a locked Switch path is established with OPEN lock, it must

be explicitly instructed to remain open by the upstream T—Bus
master. This is accomplished by following the OPEN function
request with either: another OPEN, a MAINTAIN. or BYPASS
function request. Essentially, the Requestor takes no special
action on either of these requests but does demand their

presence. If the OPEN/MAINTAIN/BYPASS protocol is violated by
subsequently initiating a NORMAL function request, the Requestor
will respond to the offending T_Bus master with an ERROR and
tear-down the Switch path. This mechanism is described in the

"T—Bus Request Screening" section.

Preliminary Release Page 45 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

5.1.1.8.2 Dropping Locks

The Requestor has a flag, known as the "drop-lock request" flag,

which causes the Requestor to negate Frame and return to its

unlocked Idle state. Although the flag does not cause this

action until the Requestor BIU is in its Locked Idle state, it

can be set at any time. Once set, a drop—lock condition is said

to be active. There are three distinct scenarios under which

a drop—lock condition may occur: (1) A T-Bus master which is
locked to the Requestor may issue a FREE-LOCK, (2) The
Requestor issues an ERROR response (under certain conditions),
and (3) a Connection Timer timeout.

Whatever the cause of the drop—lock condition, the Requestor

BIU waits until it returns naturally to its Locked Idle state

before taking action. Once there, the Requestor BIU wri 11 then

enter the "unlock" state in which it will fulfill the drop

lock request flag by commanding the Requestor STU to negate

Frame. During this state, the Requestor BIU will issue a
REFUSED response to ANY T-Bus Master that accesses it. Once the
Requestor BIU has been signalled by the STU that Frame was
negated, the BIU returns to its Unlocked Idle state. Of course,
the drop—lock request flag is then also negated. The
downstream Server, knowing that it was previously locked,

interprets the subsequent loss of its incoming Frame to be a
FREE-LOCKS. The Server, sensing an unexpected loss of Frame,

then issues a FREE-LOCKS to the local T-Bus.

The first drop-lock scenario - a FREE-LOCKS issued by a T-Bus
master - is the most conventional. The FREE-LOCKS request is

the only function request that is NOT explicitly transmitted to
the downstream Server in the form of a message. Instead, the

Requestor responds to a FREE-LOCKS by negating Frame to the
Switch interface. Because the drop-lock condition can be

entered at any time, a T—Bus master can issue a FREE—LOCKS
at any time - whether the Requestor is idle or acting on a
current split-cycle. However, the Requestor must be already
locked to the T-Bus master which made the request. If not, the

BIU will ignore the FREE-LOCK request.

In the ERROR response scenario, the Requestor will NEVER enter
the drop—lock condition when the ERROR response is due to a
Remote Class Error. However, it MAY enter the drop-lock

condition when the ERROR response is due to an FQ or Switch

Preliminary Release Page 46 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Class Error. This conditional action is described in the "Auto

Drop"

section. Error classes are discussed in the "Error

Detection and Reporting"sec11 on. However, if those conditions

ARE valid for a drop—lock, the Requestor processes the drop

lock in the same manner as the FREE-LOCKS scenario. Unlike

the FREE—LOCKS however, drop-lock processing takes place

almost immediately after the event which caused the drop

lock condition (responding with an ERROR) This is because the
Requestor BIU always enters its Locked Idle state immediately

after issuing an ERROR response.

The Connection Timer timeout scenario is slightly different from

the previous two. When the Connection Timer times—out, it
indirectly causes the drop-lock condition by eventually causing

an ERROR response (Wait_TO or Idle_TO) by the Requestor BIU.
This normally would be sufficient because the BIU would then
enter the drop-lock condition, which would then signal the
Requstor STU to negate Frame. However, one of the reasons that
the Connection Timer may have timed-out was because the Requestor

BIU had lost its T-Bus clock (T_CLK). In this case, Frame would
never get negated. Therefore, the Requestor STU takes the
initiative to negate Frame immediately after a Connection Timer
timeout. For consistency, the drop-lock mechanism continues

as normal. When the Requestor STU finally gets the request

from the BIU to negate Frame, the STU simply ignores that

request.

5.1.1.8.3 Auto Drop

Auto drop is a parameter set by the
Req_ConfigA.Ena_Auto_Drop bit. When asserted (=l) the Requestor
will be permitted to enter the drop-lock condition whenever an
ERROR response is generated because of an FQ or Switch Class
error. Otherwise, the Requestor will NEVER enter the drop-lock
condition due to an ERROR response. This is because the only
other class of Requestor error - Remote Error -will NEVER cause
the drop—lock condition.

Preliminary Release Page 47 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

5.1.1.9 Stolen Bit Support

Because of the structure of the Switch message format, only one

bit of Stolen information can be transferred between upstream

and downstream nodes during a given message. The Requestor

records the state of the Stolen bit during the word transfered

in a byte write operation. It is this state that is relected in

the Switch message. Normally, the Requestor expects the Stolen

bit to be asserted only during a BYTE write operation. In fact,

it is illegal to assert the Stolen bit to the Requestor during a

multi—word operation.

NOTE: If the Stolen bit IS asserted during a multi—word write,

the state of the the first word written is recorded.

The Requestor provides a mechanism to verify that the Stolen bits

of all words in a multi—word write are zero, and prevent the

message from being transmitted if this is not the case. The

Ena_Stolen_Verify bit in the Req_ConfigB register, when

asserted, will enable this verification of Stolen bits in a

multi—word write. There is however, a small price to pay for this

feature: the FQ_Anticipation register must be set to its
MAXIMUM value (=011). This is because the Requestor must load
all words of a multi-word write and verify the Stolen bits before

commiting to transmission. The Requestor cannot "call back" the

outgoing message. Figure 33 summarizes the rules for
verifying the Stolen bit.

To enable the verification of Stolen bits on a multi-word writes,

1) Set FQ_Anticipation = Oil, AND...

2)Assert (=l) the Req_ConflgB.Ena_Stolen_Verify bit

Rules - Stolen Bit Verification - Multi-Word Write

Figure 33

If the rules of Figure 33 are adhered to and a particular
multi-word write has some of the Stolen bits asserted, the

Requestor will respond with an ERROR ("Sto1en_Verify" error code)
to the T-Bus master. The Requestor, of course, will NOT

transmit the message in this case.

Preliminary Release Page 48 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

For single—word reads, the Requestor presents to the T-Bus a
Stolen bit (T__AD<32>) which is the same state as the Stolen bit
in the upstream Checksum byte. For multi—word reads, the
Requestor always assumes that the words of the transfer are NOT
Stolen until it encounters an asserted Stolen bit in the

Checksum byte. When this occurs, only the last word received by
the Requestor is assumed to be Stolen. This fact is transmitted
to the T-Bus by asserting T_AD<32> during the transfer of the

last word on the T-Bus.

5.1.1.10 Quick Drop

The Requestor STU has an option which enables it to negate
Frame during an Initial Message as soon as the STU detects
an asserted Reverse. This can be done without the STU actually

waiting to see if Reverse is going to be a Reject or an actual
message. This action is allowed only when the STU is
transmitting an Initial Message (NOT an Initial Locked Message)
because in this situation, the only possible responses are:

Reject or an upstream Switch message. In either case, the
Requestor will negate Frame immediately if the bit:
Requestor_ConfigB.Ena_Quick_Drop is asserted (=1). Essentially,
Quick Drop is an optimization which will free up the Switch
earlier - although only by one Switch Interval - than if Quick

Drop were not enabled.

5.1.1.11 Reverse Profile Monitoring

The Requestor is enabled to monitor the profile of Reverse
for errors asserting (=1) the Req_ConflgB.Ena_Rev_Err bit.
Once enabled, the Requestor will report a Switch Class Error
(Reverse_Error) whenever it observes an incorrect state for
Reverse during an upstream message. Since there is more than
one possible Reverse profile for a given Function Request,
not every Switch Interval of Reverse can be checked for a
given state (0/1) because either state may be valid. However,
when the Reverse profile is incorrect in ANY place that is
checked, a Reverse_Error is reported.

Figure 34 illustrates how the Requestor checks the Reverse
profile. The "x's" represent where either state is valid and is
therefore not checked by the Requestor.

Preliminary Release Page 49 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

TYPE #WORDS RETURN MSG FORMAT

wr ite any

read non—mult i

two—words

three—words

H first received

V

xxL

xxHH HL

xxHH HL

xxHH HxHH HL

xxHH HL

xxHH HxHH HL

xxHH HxHH HxHH.HL

three—words xxHH.HL

xxHH.HxHH.HL

..where

xxHH,HxHH,HxHH,HL

xxHH,HxHH,HxHH,HxHH,HL

x = don ' t care

H = check for Reverse = 1

L = check for Reverse = 0

Requestor Reverse Profile Monitoring

Figure 34

NOTE: The Requestor will NOT specifically check that Reverse was
negated (=0) when the Function Request was initiated. However,
it DOES begin looking for a 0-to-l transition of Reverse in
order to recognize the beginning of the upstream message.
Therefore, if Reverse were to be "hung high" when the

Requestor began its Function Request, the Requestor would
eventually timeout the Connection Timer.

Preliminary Release Page 50 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

5.1.1.12 Error Detection and Reporting

Errors delivered by the Requestor to an initiating T—Bus master

can be divided into three classes depending on which part of

the SIGA detects them. The classes are 1) FQ Errors - which
are detected by the BIU from the original Function Request; 2)
Switch Errors — which are detected by the STU and SRU because

of Switch interactions and 3) Remote Errors — which are
detected by the downstream Server and are "reflected" up to the

initiating T-Bus Master.

For a given Function Request/Response sequence, errors from
different classes can occur simultaneously. Since only one error

can be reported at a time, a sense of "priority" exists between

error classes. If there is a FQ Error, it always be reported,

regardless of the presence of Switch or Remote Errors. If there

is no Local Error, than any Switch Errors will be reported,

regardless of the presence of Remote Errors. If there is

neither a Local nor a Switch Error, then and only then will any

Remote Errors are reported.

Figure 35 shows the Error Codes for the Requestor which include
the FQ and Switch type errors. Note that WITHIN a given Error

Class, the errors are again not all mutually exclusive, and are

therefore given "within—c1 ass" priorities. A more detailed
description of the three Error Classes follows.

5.1.1.12.1 FQ Errors

FQ Errors are detected by the BIU during the original Function

Request. Their detection, when enabled, will ALWAYS prevent
the Function Request from initiating a Switch access. If the
Requestor is unlocked, it will NOT assert Frame after
detecting an FQ Error. If the Requestor is locked, it MAY
immdiately tear—down the lock if certain conditions are met.

See "Auto Drop" for more details.

FQ Error types and their definitions are illustrated in Figure
36.

Preliminary Release Page 51 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Requestor Error Codes:

7 0

I I
PPPPdcba

d c b a Requestor Error Class

Maintain_Absent—(la)
Maintain_Present-(lb)
Stolen_Ver1fy(2)
Lock_Address-(3)
Wait_T0-(4a)
Idle_T0-(4b)
Rej_Abort(5)
Rej_T0-(6)
Reverse-(7)
Check-(8)

.where,

P..P = Requestor_ConfigA.Error_Prefix<3..0>.

Priority is from highest (l) to lowest (8).
Within a given priority, errors are mutually

exclusive (i.e.,4a,b...).

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

Requestor Error Codes

Figure 35

FQ

FQ

FQ

FQ

Swi tch

Swi tch

Swi tch

Swi tch

Swi tch

Swi tch

Preliminary Release Page 52 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Lock Address Violation — Requestor was asked to access a

node within a locked sequence which is different

than the node which opened that sequence. (only
detected if configured to do so).

Maintain Present — Requestor was asked to MAINTAIN a

remote lock when it was never OPENed. (only
detected if configured to do so).

Maintain Absent — Requestor was not asked to MAINTAIN,

BYPASS or OPEN a lock that was not yet

explicitly released with FREE—LOCK. (only

detected if configured to do so).

FQ Error Definitions

Figure 36

5.1.1.12.2 Switch Errors

Switch Errors are caused by a variety of conditions that are

detected by the logic which monitors the progress of the

Switch message as it enters and returns from the Switch

interface. Unlike FQ Errors, Switch Errors are detected

once the Switch transaction is already underway. They are

reported to the T—Bus Master only when the the transaction is

"finished", either normally or due to some timeout. Therefore,

Switch Errors can only have a special affect on Frame during

a locked sequence. In this case, the Requestor MAY immdiately

tear-down the lock if certain conditions are met. See "Auto

Drop" for more details.

Switch Error types and their definitions are illustrated in

Figure 37.

Preliminary Release Page 53 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Wait_TO - The Switch Transmit Connection Timer

overflowed while the Requestor was waiting for a

Function Response. (See: "Connection Timer")

Idle_TO - The Switch Transmit Connection Timer

overflowed while the Requestor was in its idle

state. (See: "Connection Timer")

Rej_Abort - The Switch Transmit Reject Timer was forced
into overflow by the the REJABORT input pin. (See:
"Re ject Timer")

Rej_TO - The Switch Transmit Reject Timer overflowed
while the Requestor was attempting to open a

connection. (See. "Reject Abort")

Reverse — The Requestor detected an incorrect polarity

of the Reverse signal during a Function Response.

(See: "Reverse Profile Monitoring")

Check - The Requestor detected an incorrect Checksum

during a Function Response. (See: "Checksum
Support")

Switch Error Definitions

Figure 37

5.1.1.12.3 Remote Errors

Remote Errors include: l) errors which are detected within the
Server logic itself, and 2) errors generated as T-Bus errors
responses by a downstream T—Bus slave device. Both types errors
are simply passed-through "as is" to the upstream Requestor.
This Requestor simply "hands" them - without
differentiation - to the initiating T-Bus Master. Remote Errors,

unlike FQ and Switch Errors, can NEVER cause the Requestor to

"drop" a lock.

Preliminary Release Page 54 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

A summary of the "Server—sourced" Remote errors, see

"Server/Operat ion/Error Reporting."

5.1.1.13 Disabled Operation

The Requestor can be disabled via a number of bits in the

Request or__Conf igB register. These include: Ena_REQ_BIU,

Ena_REQ__STU, Ena_REQ_SRU, and Ena„REQ_CNT. These bits reset

the four major blocks of the Requestor.

WARNING: In normal operation, these bits SHOULD ALWAYS BE

ASSERTED/NEGATED AT THE SAME TIME. Otherwise, erratic Requestor

operation may result.

When these bits are disabled (=0), the Requestor T—Bus interface
will respond "REFUSED" to any T-Bus master that tries to access

it. The Requestor will also ignore any assertions of REVERSE from

the Switch interface.

5.1.1.14 Configuration Registers

The Requestor has two general Configuration Registers.
They are: Requestor_ConfigA and Requestor^ConfigB. In

general, both Configuration Registers are used to set
miscellaneous parameters and enable/disable certain functions.
Figure 38 shows the structure of Requestor_ConfigA.

Preliminary Release Page 55 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Reg ister : Reques tor_Conf1gA<31 ..0>

BIT/FIELD FUNCTION (read/write)

<31 .29>

<28>

<27>

<26>

23>

19>

15>

1 1>

.9>

.6>

. 1>

<0>

<25 .

<22.

<18.

<14.

<10

<8

<5

REQ_Slave_Num[3]
Modulo_8

Co 1umns_2

Ena_Auto_Drop

FQ_Ant icipation[3]
STU_Synch[4]
BIU_Synch[4l
Error_Prefix[4]
Sixty_Five_Delay[2]
CSU_S1ave_Number[3]
Real_Time_Prescale[5]
Columns 1

Register Definition - Requestor_ConfigA

Figure 38

The bit definition of Requestor_ConfigA is shown in Figure 39.

This register contains mostly configuration bits that affect the

run-time parameters of the Requestor. All bits are "high—true"

and are reset (low) upon system reset. The structure of
Requestor_ConfigB is shown in Figure 40. The bit definition of
Requestor_ConfigB is shown in Figure 41. This register contains

mostly configuration bits that enable/disable different functions
and error reports of the Requestor. All bits are "high-true" and

are reset (low) upon system reset.

5.1.1.15 Test Registers

The Requestor also contains a test register, Requestor_TestA. Its
structure is shown in Figure 42. This register contains bits
that are related to production testing of the SIGA, and unlike
all other configuration registers, a read of Requestor_TestA
does not yield the data last written. The write bits are
initialized in their negated state and are related to

Preliminary Release Page 56 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

REQ_S1ave_Num[3] - Configures the T—Bus slave number
that the Requestor will respond with (on the
T_S0URCE<2..0> pins) when making a Function
Response..

Modulo_8 - Configures the Requestor to expect either a

modulo-8 element (=1) or a modulo—16 (=0) Switch
e1ement.

Columns_2 — Configures the Requestor to expect either a

2—column (=0) or a 3-column Switch.

Ena_Auto_Drop — Enables the Requestor to tear-down

a connection when a Function_Request or Switch

class of error is detected (=1). Otherwise, these
types of error will only be reported by the

Requestor and no special action will be taken

(=0).

FQ_Anticipation[3] - Configures the Requestor for the
desired Function Request Anticipation. (See:
"Anticipation Support")

STU_Sync[4] — Configures the settling time of the
Switch Transmit Unit's (STU) handshake
synchronizer which receives an "execute"

signal from the Bus Interface Unit (BIU). This
signal is used to initiate a Function Request on

the Switch. (See: "Synchronization")

BIU„Sync[4] - Configures the settling time of the Bus
Interface Unit's (BIU) handshake synchronizer
which receives a "completed" signal from the

switch transmit unit (STU). This signal is used to
inicate that a function response has been received

by the SRU. (See: "Synchronization")

Error_Prefix[4] - Configures the Prefix (T-Bus bits:
D7—D4) of the Error code response for Requestor
errors. (See: "Error Handling")

Sixty_Five_De1 ay[2] — Configures the pipeline delay of

Preliminary Release Page 57 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

M_SIXTY_FIVE pulse. Millisecond pulse as seen

by the Requestor. WARNING DO NOT USE THE "00"

SETTING. (See: "Real Time Clock" for further
detaiIs)

CSU_S1ave_Number[3] - Configures the Slave number that
the CSU will respond with (on the T_SOURCE<2..0>
pins) when making a Function Response.

Real_Time_Prescale[5] - Configures the terminal
count of the Real Time Prescaler. (See: "Real
Time Clock" for further details)

Columns_l - Configures the Siga for a 1-column switch.

(See: "Real Time Clock" for further details)

Bit Definition - Requestor_ConflgA

Figure 39

production testing of the SIGA. Their functional description is

not within the scope of this document and therefore is not

1i sted here.

WARNING: Bits of Req_TestA SHOULD NEVER BE ASSERTED DURING NORMAL

OPERATION.

The read bits are used to observe the internal state of the

Requestor. They will yield no useful information during normal

operat ion.

Preliminary Release Page 58 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Register : Reques tor_Conf igB<31. .0>

BIT/FIELD FUNCTION (read/write)

<31..23>

<22>

<21>

<20>

<19>

<18>

<17>

<16>

<15>

<14>

<13>

<12>

<11>

<10>

<9>

<8>

<7>

<6>

<5>

<4>

<3>

<2>

<1>

<0>

Route_Address_Mask[9]
Ena_Sto1enVerlfy_Err

Ena_Maintam_Absent__Err

Ena_Ma mtai n^PresentJrr

Ena_Lock„Addr_Err

Ena_Wait_TOJErr

Ena_Idle__TO_Err

Ena_Re j_Abor t_Er r

Ena_Rej_TO_Err

Ena_Check_Err

Ena_Reverse_Err

Ena_Remo te_E r r

Ena_Qui ck_Drop

Ena_Priori ty_Promot ion

Ena_Inter1eaver

Ena_Rej ect_Abort

Ena_Rej ect_Timer

Ena_Conn_Timer

Ena_Switch_Frame

Ena_REQ_BIU

EnaJREQ_STU

Ena_REQ_SRU

Ena_REQ„CNT

SPARE

Register Definition — Reques tor__Conf igB
Figure 40

Preliminary Release Page 59 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

Route_Address_Mask[9] - Configures the randomization
mask for the Bus Interface Unit's translation of

the Logical Route Address to the Physical Route

Address. (See: "Route Address Generation")

The Enable Error bits allow the indicated errors

to be REPORTED (=1). or to be unreported (=0).
Note that they DO NOT prevent the errors from

occuring. The error functions that these bits

enable/disable are described in the "Error

Handling" section. The bits are as follows:

Error Bit

Ena_Sto1en_Verif y_Err

Ena_Maint ain_Absent_Err

Ena_Mamt a in_Present_Er r

Ena_Lock_Addr_Err

Ena_Wait_TO_Err

Ena_Idle_TO_Err

Ena_Rej_Abort_Err
Ena_Rej_TO_Err
Ena_Check_Err

Ena_Reverse_Err

Ena Remote Err

Ena_Quick_Drop — Enables (=1) or disables (=0) the
Requestor Switch Transmitter to neagte Frame as

early as possible on an Unlocked operation.

(See: "Quick Drop")

Ena_Priority_Promotion - Enables (=1) or disables (=0)
the Priority Promotion mechanism. (See: "Priority
Promot ion")

Ena_Inter1eaver — Enables (=1) or disables (=0) the
Requestor's detection of the INTERLEAVED pin. (See:
"Interleaver Support")

(=0) the
n . (See:

2na_Reject_Abort - Enables (=1) or disables (
Requestor's responding to the REJ_ABORT pi

Preliminary Release Page 60 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

"Rej ec t Timer")

Ena_Reject_Timer - Enables (=1) or disables (=0) the
operation of the Reject Timer. This bit will

override the Ena_Reject_Abort bit.

Ena_Conn_Timer - Enables (=1) or disables (=0) the
operation of the Connection Timer.

Ena_Switch_Frame - Enables (=3) or disables (=0)
the assertion of the REQ_SW_FRAME pin. This

function overrides any other function which effects

the assertion of the REQ„SW__FRAME pin.

Ena_REQ_BIU - Enables (=1) or resets (=0) the
Requestor Bus Interface Unit. WARNING: MUST

ALWAYS HAVE THE SAME STATE AS: Ena__REQ_STU,

Ena_REQ_SRU, Ena_REQ__CNT. (See: "Disabled
Operat ion")

Ena_REQ_STU - Enables (=1) or resets (=0) Requestor
Switch Transmit Unit. WARNING: MUST ALWAYS HAVE

THE SAME STATE AS: Ena_REQ_BIU, Ena_REQ_SRU,

Ena_REQ_CNT. (See : "Disabled Operation")

Ena_REQ_SRU - Enables (=1) or resets (=0) Requestor
Switch Receive Unit. WARNING: MUST ALWAYS HAVE

THE SAME STATE AS: Ena_REQ_BIU, Ena_REQ_STU,

Ena_REQ_CNT. (See: "Disabled Operation")

Ena_REQ_CNT - Enables (=1) or resets (=0) Requestor
Counter (Timer) Module. WARNING. MUST ALWAYS
HAVE THE SAME STATE AS: Ena_REQ_BIU,

Ena_REQ_STU, Ena_REQ_SRU. (See. "Disabled
Operation")

Columns_l - Configures the Requestor to expect a 1—

column Switch (=1). In this case. the Requestor
still uses Columns_2 to determine the Bid

construction. When negated (=0). the Requestor
uses Columns_2 for both number of bids to be sent

AND bid construction (See: "Downstream Message
Components")

Preliminary Release Page 61 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Bit Definition - Requestor_ConfigB

Figure 41

Register: Requestor_TestA<31..0>

BIT/FIELD FUNCTION (write)

<31> TST_BIU_GEN

<30> TST_CNT_RTP

<29..27> TST_CNT_RJT[3]
<26> TST_CNT__COT

<25..22> TST„CNT„RSR[4]
<21> TST_TIO_RND

<20..0> SPARE[2 1]

BIT/FIELD FUNCTION (read)

<31> TM_SSR

<30. .27> TM_RSR[4]
<26> TM_COT

<25..24> TM_RJT[2]
<23> TM_RTP

<22> SR_REJ_DET

<21..15> SR_FSM[7]
<14> ST_LOCKED

<13. .1> ST_FSM[13]
<0> ST RND ROUTE

Register Definition — Requestor_TestA

Figure 42

5.1.2 Switch Message Protocol

The Requestor fully generates and supports the Butterfly Switch
protocol. That support is described below.

Preliminary Release Page 62 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

5.1.2.1 Physical Route Address Generation

The Switch route address from the T-Bus field, T_AD<33..25>,

is actually a logical address. This Logical Route Address, which

has two possible sources, undergoes a transformation to derive

the Physical Route Address. It is the Physical Route Address

which is assembled into the bid symbols of the downstream

Switch message. The Logical Route address is used in

the calculation of the Header Partial Sum (see the
Requestor/Checksum Calculation section). During a given
function request, the two possible sources of Logical Route

Address for the Requestor are the T-Bus (T_AD<33..25>) and the
interleaver port (I_M0D<8..0>). The interleaver port is chosen
if. (1) the I_INTERLEAVED pin is asserted on the SIGA during
the T-Bus request cycle AND (2) the Enable_Inter1eave bit in the
Requestor_ConfigB register is asserted.

NOTE: It is assumed that both the T—Bus Master making the

request and the Interleaver will force any unused bits in

Logical Route Address to "0" as it is presented to the pins of

the SIGA.

Whichever routing address is actually chosen, that 9—bit

quantity undergoes a transformation. It is modified to allow

the randomization of a selectable number of the routing bits.

The random bits that potentially replace routing bits are

obtained from a 9—blt random number generator, the Random

Route Generator, which runs at the T—Bus clock rate. A bit in

the route address can be specified as random by setting a

corresponding bit in the Route Address Mask register to a
"1". The transformation for the Physical Route Address

generation can be expressed by an equation as shown in Figure 43.

The first equation in Figure 43 represents the selection of

either the Interleaver port or the T—Bus port for the Logical

Route Address. The second equation randomizes selected bits in

the Logical Route Address. The Route Address Mask is located in

the Req_ConfigB configuration register.

5.1.2.2 Downstream Message Components

Some of the relavent aspects of the downstream Switch message

components are now discussed. For a more detailed explanation
of Switch message definition and protocol, see the reference

Preliminary Release Page 63 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

documents

temp<8..0> = MOD & INT & INT_EN
[T_SNN & (!INT # !INT_EN)]

PRA<8..0> = (RAND & RAM) # (temp & !RAM)

...where,

T_SNN = T_AD<33..25>

MOD = I_MOD<8..0>

INT = T_INTERLEAVED

INT_EN = Req^Conf igB .Ena_Inter leaver
RAND = RAND<8..0>, random # generator

RAM = Route_Address_Mask<8..0>

PRA = Physical Route Address

Equation - Physical Route Address Generation
Figure 43

5.1.2.2.1 Header

The construction of the message header, which contains the bid
symbols; varies depending on the modulus of the Switch, which can
be either 8 or 16. The SIGA design will support both options,
although the modulo-8 Switch is the most likely to be
encountered. In addition, the Requestor can support a one, two or
three column Switch. Figure 44 shows the format of the bid
symbols in both modulus configurations. As seen from Figure 44,
certain bid symbols may never be sent if the Switch is small
enough. Note that a modulo-8 switch is always expected to have at
least two switch columns and a modulo-16 can have as few as one.
The random bits mentioned in Figure 44 are obtained from a
separate random number generator known as the Random Route
Generator.

Preliminary Release Page 64 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

0 0 PI PO Rd Re Rb

0 0 PI PO Rd Re Rb

0 0 PI PO Rd Re Rb

0

Ra (BID 1) (first sent)
Ra (BID 2) V
Ra (BID 3) (last sent)

. . .where ,

P1..P0 = priority from T-Bus: PRI0RITY<1..0>
Ra..Rd = Physical Route Address (see below...)

COL1 C0L2 MOD8

BID1

Rd Re Rb Ra

BID2

Rd Re Rb Ra

BID3

Rd Re Rb Ra

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

n2 nl nO R8

0 R8 R7 R6

R7 R6 R5 R4

0 R5 R4 R3

n2 nl nO R8

0 R8 R7 R6

R6 R5 R4

R5 R4 R3

R'i

0

R7 R6 R5 R4

0 R5 R4 R3

R3 R2 Rl RO

0 R2 Rl RO

...where,

COL2 = Requestor_ConfigA.Columns_2
COL1 = Requestor_ConflgA.Columns_l
MOD8 = Requestor_ConfigA.Modulo_8

nl,n2,n3 = random bits

= Bid is NOT transmitted

R3 R2 Rl RO

0 R2 Rl RO

Bit Definition - Downstream Message Header

Figure 44

Preliminary Release Page 65 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

5.1.2.2.2 Body

The message body; which contains the command, address, data

and checksum bytes; varies based on the type of message being

sent downstream. The general format is shown in Figure 45.

Figure 45, of course, shows a single word write message. For

multi-word write transfers there would be correspondingly more

data bytes. For a read message, the difference would be that

all data fields would be missing and bit S would be forced to a

zero .

NOTE: The current SIGA design ALWAYS forces the "F" bit to be a

"0" .

5.1.2.3 Checksum Support

The Requestor and Server each have two separate units of

checksum logic. The first, known as the Transmit Checksum Unit,
calculates the message checksum during its transmission. The

second, known as the Receive Checksum Unit, calculates and

verifies the checksum for the incoming message.

The elements included in the calculation of the checksum of

a downstream message vary depending on the type of message

being transmitted. For any initial message (locked or
unlocked), the Requestor always initializes its Transmit
Checksum Unit with the "flash" sum of the Logical Route Address.

The Logical Route Address can, of course, come from either
the MOD pins (interleaved access) or from the T-Bus (non-
interleaved). For any locked messages, the Requestor always
initializes its Transmit Checksum Unit to zero.

In the same way, the downstream Server must initialize its
Receive Checksum Unit to ITS node checksum whenever it

expects an initial message. This initialization value will,
of course, match that calculated by a Requestor about to

transmit to that Server's node. For locked messages, the Server

will initialize its Receive Checksum Unit to zero, just as the

Requestor does with its Transmit Checksum Unit.

In an upstream message, there are NEVER any routing bits to
contend with. Therfore, the downstream Server always

initializes its Transmit Checksum Unit to zero, as does the

Preliminary Release Page 66 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

LI LO Rl RO S2 SI SO A24

A23 A22 A21 A20 A19 A18 A17 A16

A15 A14 A13 A12 All A10 A9 A8

A7 A6 A5 A4 A3 A2 Al AO

D31 D30 D29 D28 D27 D26 D25 D24

D23 D22 D21 D20 D19 D18 D17 D16

D15 D14 D13 D12 Dll D10 D9 D8

D7 D6 D5 D4 D3 D2 Dl DO

<possible addtional write words>

(first sent)

F 0 0

...where,

CS3 CS2 CS1 CSO (last sent

L1..L0 = lock operation from T-Bus: T_LOCKOP<l..0>

R1..R0 = portion of field from T-Bus: T_RR<1..0>

Rl RO

0 0

0 1

1 0

1 1

wr i te

read

<unused>

<unused>

S2..S0 = size information from T-Bus: T_SIZE<2..0>

A24..AO = address information from T-Bus: T_AD<24..0>

D31..D0 = data information from T-Bus: T_AD<31..0>

F = enable forward drivers

F

CS3

S

CSO

0 disable forward drivers next clock

1 enable forward drivers next clock

Stolen Bit

message checksum

Bit De f ini t ion Downstream Message Body (write)
Figure 45

Preliminary Release Page 67 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Requestor's Receive Checksum Unit

5.1.2.4 Checksum Calculation

The checksum for a downstream message is actually calculated in

two parts. If the message is an initial (locked or unlocked)
one, a partial sum of the message header is calculated (by
separate logic) and stored in the Transmit Checksum Unit. Then,
the Transmit Checksum Unit adds the initial value, if any, to

the bytes of the body of the message as it is transmitted.

5.1.2.4.1 Header Partial Sum

The header partial sum is derived by considering only the

Logical Route Address bits. This means that the priority and

random bits are not included in the calculation. This approach

eases the design of the checksum logic and makes it

independent of the Switch modulus. The equation for this

calculation is shown in Figure 46.

HPS<3> = R8 $ R7 $ R3

HPS<2> = R6 $ R2

HPS<1> = R5 $ Rl

HPS<0> = R4 $ RO

...where,

HPS<3..0> = Header Partial Sum

R8..RO = Logical Route Address

Equation - Requestor Header Partial Sum Calculation
Figure 46

5.1.2.4.2 Message Checksum

As previously mentioned, the header partial sum is added to
the body of a downstream message if and only if that message

Preliminary Release Page 68 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

is an initial message. The message checksum calculation is

shown in figure 47.

CS<3> = HPS<3> $ exor(Ll,S2,A23,A19,A15,Al1,A7,A3,
D31,D27,D23,D19,D15,D10,D7,D3,F)

CS<2> = HPS<2> $ exor(L0.Sl,A22,A18,A14,A10,A6,A2,

D30,D26,D22,D18,D14,D9,D6,D2,0)

CS<1> = HPS<1> $ exor(Rl,SO,A21,A17,A13,A9,A5,Al,

D29.D25.D21,D17,D13,D8,D5,Dl,0)

CS<0> = HPS<0> $ exor(R0,A24,A20,A16,A12,A8,A4,A0
D28,D24,D20,D16,D12,D7,D4,D0,S)

...where,

exor'ed components from: "Bit Definition - Message Body"

CSO. .0> = message checksum

HPS<3..0> = Header Partial Sum

Equation — Message Checksum (see text)
Figure 47

Figure 47 shows the calculation for a single word write message.
For write messages with more words, those bytes would be included
in the same manner as the data bytes in the figure. For read
messages, the data field would be missing entirely from the
calculat i on.

NOTE: The "F" field is always "0".

5.1.2.5 T-Bus Interface

The Requestor supports the standard T-Bus protocol with
some small limitations. For one, the Requestor does NOT support
unaligned transfers which fall accross word (32-bits) boundaries.
In addition, when it is locked to a T-Bus Master and in its

"WAIT" state, the Requestor will always issue a REFUSED LOCKED

Preliminary Release Page 69 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

to ANY T—Bus query while it is busy processing a split—cycle
request. This means that it will even REFUSED LOCKED to

it's own T—Bus master! This is a hardware optimization which

should cause no problems. The locking T-Bus master normally

has no reason to query the Requestor until the Requestor

finishes its current operation.

Figure 48 shows the Requestor's state—dependent T—Bus responses

while it is in some of its more interesting states.

NEXT RESPONSE CONDITION

State = IDLE (satisfied a function request, waiting for new one):

PROMISE

PROMISE

MORE

REFUSED

REFUSED LOCKED

PROMISE

PROMISE

MORE

REFUSED

!LOCKED & !DROP_LOCK & read

!LOCKED & !DROP_LOCK & write & !multi

!LOCKED &c !DROP_LOCK & write & multi

!LOCKED & DROP_LOCK

LOCKED & !DROP_LOCK & !my_master

LOCKED & !DROP_LOCK & my_master & read

LOCKED & !DROP_LOCK & my_master & write & Imulti

LOCKED & !DROP_LOCK & my_master & write & multi

LOCKED & DROP LOCK

State = WAIT (waiting for function request to traverse Switch)
—or —

State = BREQ (making T-Bus request for T—Bus with split response)

REFUSED !LOCKED

REFUSED LOCKED LOCKED

Requestor T-Bus Responses (partial list)
Figure 48

Preliminary Release Page 70 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

5.1.2.6 LCON Interface

The LCON is a the physical and logical link between the SIGA-

Requestor and the "input" port of the Switch Gate Array (SGA).
In other words, for the SIGA, the LCON interface is the logical

Switch interface. The LCON provides the Requestor with: 1)
level conversion to and from the ECL levels of the SGA and 2)
reclocking of data, Frame, Reverse and the 65 ms pulse to and

from the SGA.

Figure 49 shows the Requestor's LCON (Switch) Interface Pins.

PIN NAME

R_DATA<7..0>

R_FRAME

R_REVERSE

R_NENA_BACK

M SIXTY FIVE

TYPE

bidirecti onal

output

input

output

input

FUNCTION

Requestor-LCON data bus

Frame output to Switch

Reverse input from Switch

LCON TTL driver enable

65 ms timer input

Requestor LCON (Switch) Interface Pins
Figure 49

5.1.2.6.1 Data Bus Enable Control

The Requestor controls the enables of both its own output
drivers and the LCON's output drivers to the SIGA-LCON data
interface - R_DATA<7..0>. To control its own output drivers,

the Requestor generates an internal signal called, nena_out.
When asserted (=0), nena_out enables the Requestors
R_DATA<7..0> drivers. To control the LCON, the Requestor
provides the R_NENA_BACK signal to directly
enable(=0)/disable(=1) the LCON's output drivers to
R_DATA<7..0>. In addition, R_NENA_BACK, after a flip-flop
delay, is used to enable/disable the LCON's Switch data ECL
interface bus. When the Requstor is driving R_DATA<7..0>, it is
in "Talk" Mode. When the LCON is driving that bus, the

Requestor is in "Listen" Mode.

Preliminary Release Page 71 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

There are two major reasons why the Requestor separately

provides the R_NENA_BACK signal First, the Requestor already

"knows" which direction the bus should be driving, and
therefore this logic need not be repeated in the LCON. Second,

this configuration gives the Requestor the ability to prevent

bus contention.

Bus contention can occur when the direction of data changes

on the LCON interface. If R_NENA_BACK changed on the same clock

edge as nena_out, there would be contention on R_DATA<7..0>

each time both of those signals changed. However, because of

timing skew and minimum delays, contention is actually only a

problem when the Requestor tries to enable its own drivers

as it disables the LCON's backward drivers. This occurs during

the transition from Listen to Talk Mode. But since the Requestor

has separate control of its own output drivers and the LCON's,

it can prevent this case of contention. It does this by

inserting a "dead" state for one Switch Interval where neither

the Requestor nor the LCON is driving R_DATA<7..0>.

The Requestor is considered "quiescent" when it is not

transmitting messages and not waiting for any replies. When

quiescent, the Requestor is in Talk Mode. The Requestor tries

to stay in Talk Mode whenever possible, making the transition to

Listen only for the absolute minimum time necessary. This

situation is the mirror image to the Server. It is always in

Listen Mode when quiescent and tries to stay m Talk mode for as

little time as possible.

When the Requestor finishes transmitting the checksum of an

Initial or Locked message, it transitions directly into Listen

Mode. Once there, it waits for either a Reject (which could
have been detected and latched during the message transmission)
or a return message. When either of those two events are

complete, the Requestor transitions back to the Talk Mode, via
the dead state. Figure 50 shows this sequence for both a

replied and a rejected Switch message. Note from Figure 50

that there is a dead state only when making a transition

from Listen to Talk Mode. Although not show in the

Figure, subsequent Locked messages act in the exact same manner.

Preliminary Release Page 72 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Transmit Mode

Frame

Reverse

R_DATA<7..0>

nena_out

R NENA BACK

ttttttttttttlllll

HHHHHH xxxxx

1111111111ldttttttttt

HHHHH

xxxxxmmmmmmcxxxxx

HHHHH

HHHHHHHHHHHH

xxxmmmmcxxxxxxxxxxxxx

HHHHHHHHHHHH

HHHHHHHHHH

Transmi t Mode

Frame

Reverse

R_DATA<7..0>

nena_out

R ENA BACK

.where

(a) Message Returned, No Reject

ttttttttt. tt t 1 Idtttttttt

HHHHHH_xxxxxxxxxxx

H

xxxxxmmmmirancx-xxxxxxxxx

HHH

HHHHHHHHHHHH HHHHHHHHH

(b) Reject Latched during Tx

m 1s a message

c is the checksum

t is Talk Mode

1 i s Listen Mode

d is the dead state

— floating bus

Timing — Requestor Switch Data Bus Enable

Figure 50

5.2 Server

The Server is described from the point of view of its overall

operation and its two major interfaces: the T-Bus interface and

the Switch Interface.

Preliminary Release Page 73 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

5.2.1 Operat ion

The operation of the Server is described by discussing its major
funct i ons.

5.2.1.1 Overvi ew

The Server is a local T-Bus master which creates a logical
coupling to a physically remote T-Bus slave via the

Switch. The Server acts as the "responder" of this coupling
on the Switch and thus can be thought of as a "master" on the

T-Bus but a "slave" to the Switch. Referring to Figure 51, the

Server contains three major functional units: Bus Interface

Unit (BIU), Switch Tx Unit (STU), and the Switch Rx Unit (SRU).
The BIU is clocked by the T-Bus clock and both the STU and

SRU are clocked by the Switch clock. Interfacing of control
signals between these units is accomplished with handshake

synchronizers, as shown. The SRU receives function requests
from the Switch and translates those requests into commands

for the BIU. The BIU handles all of the T-Bus transactions

of the Server to comply with a given function request. When a
T-Bus slave device responds to a function request, the BIU
picks-up that response and passes it as a command to the STU.

The STU then initiates an upstream Switch message to return the

function response.

The SRU detects the downstream message of a function request,
verifies the checksum and alerts the BIU of the incoming message
and the checksum status. The SRU also causes Switch rejects

when either the BIU has explicitly commanded this action or

when the SRU decides to on its own. The BIU will command a

Switch reject when a function request is trying to access a

T—Bus device which is locked to a T—Bus device other than the

Server. The SRU will NOT initiate a reject without a command from

the BIU and thus CANNOT correctly handle a nonsequitur

downstream message. A nonsequitur would occur, for instance,

when the SRU receives a function request (in the form
of a downstream message) and knows that the STU has not even
begun to send an upstream Switch message in response to the

last function request.

The SRU has the additional responsibility of initiating a FREE-

LOCKS command to the BIU when the Switch path is locked and

Preliminary Release Page 74 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Server Block Digram

Fi gure 51

the incoming Frame signal negates unexpectedly. This situation

is known as "dropping a lock" and is the ONLY time when the
Server does not create a Function Response as

explicit function request.

result of an

The SRU/BIU interface is a streamlined request/response type
interface where for each SRU request there is an BIU response.

The SRU presents an encoded function request to the BIU and sets
an "execute" flag. When the BIU is done operating on that
request, it sets a "done" flag and returns a status code and data
to the SRU. The SRU also has the ability to "interrupt" the

pending BIU operation. This is accomplished with a "terminate"
handshake signal from the SRU. The "terminate" handshake
receives a "terminate-done" from the BIU when the BIU finishes.

This "interrupt" path is used for situations where the BIU may
be indefinitely "hung" because a failed T-Bus slave is
continuously asserting Slave pause.

Preliminary Release Page 75 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Both the SRU and BIU are responsible for handling their

own functions independently and they have very little real—time

knowledge of each other's state. This approach simplifies

the Server design and carries the request/response
philosophy throughout the system.

The BIU has three major responsibilities: (1) initiate T—Bus
requests to comply with a command from the SRU; (2) receive
responses from the T—Bus; (3) transfer those responses, along
with any error indications, to the STU. To accomplish the

T—Bus request/response transfer, the BIU supports most of the
T-Bus protocol .

The STU is a fairly simple device. It acts on a function response

from the BIU and initiates the upstream Switch message to carry

out that response. The STU also is responsible for assembling

and transmitting the data in an outgoing message.

5.2.1.2 Anticipation Support

The operation of the Server has two main goals: (1) to pass
a downstream Switch function request to a T-Bus slave as

quickly and efficiently as possible, and (2) to return the
corresponding function response from that T—Bus slave as

quickly and efficiently as possible. Certain techniques can be

used to take advantage of the expected operation of the logic in

the function request and response path. These techniques are
known collectively as "anticipation". The use of anticipation

in achieving the two main goals of the Server are now

di scussed.

5.2.1.2.1 Function Requests

Maximizing downstream function request efficiency in the
Server involves balancing the desire for speed with the

desire for eliminating unwanted side—effects. The speed issue
relates to the desire to transfer data from an incoming Switch

message to the T-Bus as soon as it is available. Unwanted
side-effects involve taking any action on the T-Bus that would
cause a change in stored data in a T—Bus slave device given
that the downstream message was corrupted. Two extreme approaches

could be taken in the design of the Server. First, the Server

Preliminary Release Page 76 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

could wait until the entire downstream message had been

received, including the checksum; verify the checksum; and then

begin access to the T—Bus. Second, the Server could begin

access to the T—Bus immediately upon receiving a downstream

message.

The first approach would cause the Server to waste valuable time

in accessing the T—Bus, and the second could possibly cause

unwanted side effects. Since one of the design goals of the

Butterfly II is that data integrity should take precidence over

speed, a compromise between the first and second approaches is

implemented in the Server.

The Server "anticipates" the verification of the downstream

checksum and begins it's request for T—Bus drivership. The

timing is set up such that the Server BIU is commanded by the

SRU to make a bus request at a specific moment in time. In

fact, the SRU commands the BIU (input to the BIU synchronizer) to
begin the T—Bus request EXACTLY five Switch intervals

before the "Checksum_is_OK" signal is valid. This is true for

both reads and writes. Therefore, the synchronizer setting,

Server_ConfigA.BIU_Xfer_Sync<3..0> should be set accordingly.

See "Synchronizer Settings" for more details.

5.2.1.2.2 Function Responses

The Server uses a similar technique as the Requestor for

anticipating T-Bus transactions. Of course, in the case of the

Server, the anticipation is for Function Responses

rather than Function Requests. The

Server„Conf 1gA .Mul 11 v__Head_Star t<l ..0> register is used to set

the anticipation for multi-word writes. Figure 52 illustrates

its settings. In addition, the

Server_ConfigA.Ena_Byte_Head_Start bit, when asserted (=1),
begins anticipation whenever the T-Bus Slave responds with

EARLY-ACK.

Normally, the Server will take anticipate for reads only.

However, in some hardware configurations it is possible

to anticipate on writes. When
Server_ConfigB.Ena_Wr_Head_Start is asserted (=l), the Server
treats writes exactly the same way as reads for all purposes.

Preliminary Release Page 77 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Register: Server_ConfigA.Multi_Head_Start<l..0>

10 Wait unti1...

00 all words are transfered

01 three words have been transfered

10 two words have been transfered

11 one word has been transfered

Register Definition - Server_ConfigA.Multi_Head_Start<l..0>
Figure 52

WARNING: Using anticipation in multi-word writes can
cause unusual side-effects if the multi-word write does

not complete in time. This is because the Server SRU may
mistakenly believe that the write data buffers are actually
stable until the upstream Requestor has seen the Function
Response and taken some action. As seen by the Server, this
response takes quite long, at least 4-6 Switch Intervals. Thus,
if the multi-word write takes only this long to complete, there

is no prob1 em.

WARNING: Using read anticipation requires that the T-Bus Slave
issue an ERROR before transfering any data.

NOTE: The EARLY-ACK response has no meaning for multi-word
reads or writes, and this response is ignored by the Server.
Also, the Server must examine the T_RR field even though
T_SPAUSE may be asserted.

5.2.1.3 Locked Sequences

The Server's handling of locked sequences parallels that of the
Requestor and is described in the "Requestor/Operation/Locked
Sequences" section. Like the Requestor, the Server's locked
sequence has three distinct events: opening, maintaining and
dropping.

Preliminary Release Page 78 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

The Server becomes locked if and only if it receives an Initial

Locked message (OPEN , by definition is the command). It remains
locked as long as it returns any function response except Reject.

When a lock is dropped at the upstream Requestor, Frame is

negated. As mentioned in the "Reqestor/Operation/Locked
Sequences" section, a Requestor drop-lock function request can
occur as the result of a T—Bus master issuing a FREE-LOCK or

possibly a Requestor Switch Class error. The Server NEVER knows

the reason for the drop-lock request, it simply issues the

perfunctory FREE-LOCK to a T-Bus slave.

5.2.1.4 Stolen Bit Support

Because of the structure of the Switch message format, only one

bit of Stolen information can be transferred between upstream and

downstream nodes during a given message. Therefore, during byte

reads, the Stolen bit from the Server's T—Bus is transported to

the upstream Requestor exactly as it is read from T_AD<32>

during the data transfer cycle of the T—Bus. For multi—word

reads, the Server continues the T—Bus transaction, reading and

storing all of the intended words even when it encounters a

Stolen bit BEFORE the last word of the transfer.

However, when the Server finally transmits that data to

the upstream Requestor, it acts differently depending on whether

or not the data contains a Stolen bit. If it does not, all of

the multi—word data is included in the upstream message and the

Stolen bit in the Checksum byte is sent negated. If it does,

the Server ends transmission of the data AFTER it sends the

Stolen word, and it asserts the Stolen bit in the Checksum

byte. The upstream Requestor always assumes that the words
of a multi-word transfer are NOT Stolen until it encounters an

asserted Stolen bit in the Checksum byte. When this occurs, the

LAST word and only the last word received by the Requestor is

assumed to be Stolen.

For byte write transfers, the Server presents the state of the
Stolen bit in the downstream Checksum byte to the downstream

T-Bus bit, T_AD<32>. For multi-word writes however, the state

of ALL Stolen bits transported downstream is assumed by the

Server to be "0". In this case, the Server will ignore the

state of the Stolen bit in the downstream Checksum byte.

Preliminary Release Page 79 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

5.2.1.5 Error Reporting

Errors delivered by the Server (Requestor "Remote Error"
Class) are transported by the Server to the upstream Requestor
via the function response Switch message. Those errors may have

one of two sources: they could originate from the Server itself,

or they could be errors passed to the Server from a downstream

Slave. The error codes due to the Server are shown in

Figure 53.

Server Error Codes:

7 0

I I
PPPPPPba

b a Server Error

0 0 Downstream^Refused

0 1 Downstream_Write

1 0 Downstream_Late

1 1 Downstream_OTL

...where,

P..P = Server_ConfigA.Error_Prefix<5..0>

Server Remote Error Codes and Definitions

Figure 53

Their definitions are shown lr; Figure 54. Other remote slave

errors are described in other system documents.

5.2.1.6 Disabled Operation

The Server can be disabled via a number of bits in the

Server_ConfigB register. These include: Ena_BIU and

Ena_SRU.These bits reset the two major blocks of the Server.

WARNING: In normal operation, these bits SHOULD ALWAYS BE

ASSERTED/NEGATED AT THE SAME TIME. Otherwise, erratic Server

Preliminary Release Page 80 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Downstream_Wr1te - A downstream write error was

detected from a T—Bus Slave while the downstream

Server was sourcing data. Because of the direction

of the data bus, the Server cannot return the

actual error code.

Downstream_OTL - A downstream T—Bus Slave did not

respond to the Server's request. Specifically, the

Slave did not assert T_DRIVEN in the T-Bus cycle

following the Servers' T-Bus request.

Downstream_Late - A downstream T—Bus slave responded

with a LATE ERROR

Downstream_Refused - A downstream T—Bus slave

responded with REFUSED-LOCKED when the Server

thought itself to be locked.

Server Remote Error Definitions

Figure 54

operation may result

5.2.1.7 Configuration Registers

The Server has two general Configuration Registers, known as
Server_ConfigA and Server_ConfigB, which are used to set
miscellaneous parameters anu enable/disable certain functions.
The structure of Server_ConfigA is shown in Figure 55. The bit

definition of Server_ConfigA is shown in Figure 56. This
register contains mostly configuration bits that affect the
run-time parameters of the Server All bits are "high-true" and
are reset (low) upon system reset. The structure of
Server_ConfigB is shown in Figure 57. The bit definition of
Server_ConfigB is shown in Figure 58. This register contains
mostly configuration bits that affect the run-time parameters of
the Server. All bits are "high-true" and are reset (low) upon
system reset .

Preliminary Release Page 81 July 25, 1988

SIGA Spe cificat ion BBN Advanced Computers Inc.

Register. Server_ConfigA<31..0>

BIT/FIELD FUNCTION (read/write)

<31>

• 3 0 :•

2 9 :8 ••

:27. 24:<

:23 . . 18>

• 17.

--: 1 6 .•

:1 5 . 12

< 1 I . .8

Ena_Wr_Head_Start

Ena_Byte_Head_Star t

Multi_Head_Start[2]
RX_Init_CS[4]
Error_Pref ix[6]
Ena_BIU

Ena_SRU

STU_Freed_Sync[4]
STU_Done_Sync[4]
BIU_Free_Sync[4]
BIU_Xfer_Sync[4]

Register Definition - Server__Conf igA

Figure 55

Dis_Frame - Disables the SRU by forcing it to see the incoming

Frame negated, regardless of its actual state (=l). Otherwise,
the SRU will see the actual incoming Frame. (=0). (See: "Disabled
Operat ion")

Ena_SOC — Enables the SRU to recognize the start of a new

connection (=1). Otherwise, the SRU will ignore this event (=0).
(See: "Disabled Operation")

Dis_Check_Err - Disables the detection of checksum errors (=1).
Otherwise, the detection is enabled (=0). (See: "Checksum
Calculat ion)

SER_Slave_Num[3] - Configures the Slave number that the Server
will place on the T_SOURCE<2..0> pins when it is making a T-Bus
Function Request.

Preliminary Release Page 82 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Ena_Wr_Head_Start - Enables the Server to anticipate during

write—type Function Responses (=l). Otherwise,
anticipation will only occur for read-type Function

Responses. (See: "Anticipation Support")

Ena_Byte_Head_Start - Enables the Server to anticipate

during byte-type Function Responses (=1). Otherwise,
anticipation will not occur for byte-type Function

Responses (=0). (See: "Anticipation Support")

Multi_Head_Start[2] - Configures the Server for the desired
Function Response Anticipation for all multi—word

operations. (See: "Anticipation Support")

RX_Init_CS[4] - Configures the initial checksum for
Initial Messages. NOTE: This register must contain the

logical INVERSE of the initial checksum. (See:
"Checksum Calculation")

Error_Prefix[6] - Configures the Prefix (T-Bus bits: D7-D2)
of the Error code response for Server error. (See:
"Error Handling")

Ena_BIU — Enables the by releasing its reset signal (=l).
Otherwise, the BIU will be held in reset. (=0). (See:
"Disabled Operation")

Ena_SRU - Enables the SRU by releasing its reset signal
(=1). Otherwise, the SRU will be held in reset. (=0).
(See: "Disabled Operation")

STU_Freed_Sync[4] - Configures the settling time of the
Switch Transmit Unit's (STU) handshake synchronizer
which receives a "freed" signal from the Bus

Interface Unit (BIU). This signal indicates that the
BIU has acted on a previous "free" command from the
SRU. (See: "Synchronization")

STU_Done_Sync[4] - Configures the settling time of the
Switch Transmit Unit's (STU) handshake synchronizer
which receives a "done" signal from the the Bus
Interface Unit (BIU). This is used to indicate

Preliminary Release Page 83 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

completion of a Fuction Request. (See:
"Synchroni zat ion")

BIU_Free_Sync[4] - Configures the settling time of the
Bus Interface Unit's (BIU) handshake synchronizer which
receives a "free" signal from the Switch Receive
Unit (SRU). This is used to issue a FREE-LOCK. (See:
"Synchronization")

BIU_Xfer_Sync[4] - Configures the settling time of the Bus
Interface Unit's (BIU) handshake synchronizer which
receives a "xfer" from the Switch Receive Unit (SRU).
This is used to initiate a Function

Request. (See: "Synchronization")

Bit Definition - Server_ConfigA

Figure 56

Register: Server_ConflgB<31..0>

BIT/FIELD FUNCTION (read/write)

<31 .8>

<7 ,6>

<5>

<4>

<3>

<2 .0>

not used

spare

Di s^Frame

Ena_SOC

Dis„Check_Err

SER_S1ave_Num[3]

Register Definition - Server_ConfigB
Fipure 57

5.2.1.8 Test Registers

The Server contains a read-only test register which should
NEVER be accessed during normal operation. Figure 58 shows the
structure of that register which is used mostly for observing

Preliminary Release Page 84 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

internal states

Register: Server_TestA<31..0>

BIT/FIELD FUNCTION (read-only)

<31>

<30>

<29>

<28>

<27>

<26>

<25>

<24>

<23 20>

<19 . 16>

<15. 8>

<15>

<unused>

SRU believes it is locked

SRU refusing new connections

Synchronized "Enable New SOC's"

SRU "Should be Checksum"

SRU Checksum OK signal

SRU Anticipation Signal

Checksum errors occured

<unused>

Running Version of Rx Checksum

Internal State of SRU FSM

SRU has seen Reverse come and

go and has seen Frame go

away. Transition to 9,10,

or 13 wi11 occur

<14> SRU has seen first Reverse and

is waiting for the end of

the Reverse transmission

<13> SRU is waiting for lock to be

FREE-LOCKEed

<12> SRU is waiting for first Reverse

<11> SRU receiving Checksum byte

<10> SRU receiving a command

<9> SRU is idle

<8> Bad SOC seen (low true)

Register Definition — Server_TestA

Figure 58

Figure 59 shows the bit definition of SOME of the bits in the

Server_TestA register.

Preliminary Release Page 85 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

SRU believes it is locked - The BIU will issue a FREE-

LOCKS request if Frame is negated for more than

one Switch Interval.

SRU refusing new connections — Indicates that there is

no active connection and that new connections

will be refused (with Reject). The SRU IS currently
and WILL be idle until re—enabled. (See: "Disabled
Ope rat 1on")

Synchronized Enable New SOC's — The synchronized version

of Server_ConfigB.4. The programmer should check

this bit before assuming that the SRU will Reject

or accept new connections. (See: "Disabled
Operat ion")

SRU "Should be Checksum" - Indicates that the Checksum

should have arrived. This is used in conjunction

with the "SRU Anticipation Signal" to determine if

the SRU is properly anticipating the reception of

the Checksum byte.

SRU "Checksum OK" - Indicates to the BIU that the TBus

operation should, in fact, take place.

SRU Anticipation Signal - Indicates to the BIU that it
should begin the TBus request. See SRU "Should be

Checksum" above.

Checksum errors occured — Indicates that a checksum

error did occur sometime in the past. This bit is

negated whenever Server_ConfigB.4 is negated.

Bit Definition - Server_TestA

Figure 59

5.2.2 Switch Message Protocol

The Server fully generates and supports the Butterfly Switch
protocol. That support is described below.

Preliminary Release Page 86 July 25, 1988

SIGA Specification BBN Advanced Computers

5.2.2.1 Upstream Message Components

Unlike the Requestor, the Server never has to create a

message header with routing information because the return path

to the upstream Requestor has already been established. The

Server need only return a checksum with data and/or error code
information. Figure 60 shows a typical upstream Server message

as a response to a word—read function request. The significance

of the "E" and "S" bits are described in: "Stolen and Error

Messages."

D31 D30 D29 D28 D27 D26 D25 D24

D23 D22 D21 D20 D19 D18 D17 D16

D15 D14 D13 D12 Dll D10 D9 D8

D7 D6 D5 D4 D3 D2 DI DO

(first sent)

<possible additional read words> |
V

0 0 E S CS3 CS2 CS1 CSO (last sent)

...where,

D31..D8 = data information from T-Bus: T_AD<31..8>

D7..D0 = error code (E=l), T_AD<7..0> (E=0)
E = Error bi t

S = Stolen bit

CS3..CSO = message checksum

Bit Definition - Upstream Message Body (read)
Figure 60

The upstream message body for a write is always of the same
format whether the function request was multi—word or non—

multi word. Figure 61 shows a typical upstream Server message
as a response to a word write Function Request. The
significance of the "E" and "S" bits are described in: "Stolen
and Error Messages."

Preliminary Release Page 87 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

D7 D6 D5 D4 D3 D2 DI DO

0 0 E S CS3 CS2 CS1 CSO

(first sent)
(last sent)

. ..where,

D7..D0 = error code (E=l), unknown (E=0)
E = Error bit

CS3..CSO = message checksum

Bit Definition - Upstream Message Body (write)
Figure 61

5.2.2.2 Stolen and Error Messages

When the Upstream Read message has Stolen and/or Error bits
asserted in the checksum, their presence modify the meaning

of the message byte (or bytes) PRECEDING the checksum byte. In
the case of an asserted (=1) Stolen bit, the Server is
indicating that ONLY the previous four bytes are stolen. This

is consistent with what can happen on the T—Bus side of the

Server. There, a T-Bus Slave may happen to return a Stolen data

word which is not necessarily the last word of the read

opertion. The Server's BIU will continue to read any data "past"
the Stolen word, but its STU will always END transmission of

the Upstream Switch Message on the Stolen word - ignoring
the rest. The consequence for the Upstream Requestor is that

the "S" bit always modifies the LAST word received. The "S" bit

has no meaning for Upstream write messages and is ignored.

When the Error bit is asserted (=1) during an Upstream Read
message, the Server is indicating that the byte immediately
PRECEDING the Checksum contains the Error Code and that any

other bytes in the message are "garbage" data. The T—Bus
protocol demands that all Slaves respond with "ERROR" during
the FIRST word transfer and that an "ERROR" response ends the

Preliminary Release Page 88 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

T—Bus transfer. Therefore, an Upstream Read Message with E=l

will only contain one word of data. Assertion of the "E" bit

has higher priority than assertion of the "S" bit, so they

will never be asserted simultaneously in a given Upstream

mes sage.

Figure 62 shows a summary of the effect of the "E" and "S"
bits on an Upstream Message.

E S previous byte is

0 0 Data byte, previous word is NOT stolen (reads only)
0 1 Data byte, previous word is stolen (reads only)
1 0 Error Code (reads or writes)

Note: the value ES = 11 will never occur

Interpretation of Checksum E and S Bits
Figure 62

5.2.2.3 Upstream Message Types

The previous discussions about message formats can be brought
together to produce an enumeration of the possible Upstream
Message types. This summary is shown in Figure 63.

5.2.2.4 Checksum Calculation

Checksum support for the Server is described
in the "Requestor/Operation/Checksum Calculation" section.
The actual calculation performed by the Server is shown in Figure
64. Figure 64 shown the calculation for a single word read
message. For read messages with more words, those bytes would be
included in the same manner as the data bytes in the figure.

For write messages, the data field would be missing entirely

Preliminary Release Page 89 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

TYPE #WORDS

write any

read non—multi

two—words

three-words

four-words

STOLEN or ERRORS RETURN MSG FORMAT

none XC

any error zc

none DDDDC

e i ther on wordl DDDEC

none DDDDDDDDC

e i ther on word 1 DDDEC

stolen on word2 DDDDDDDDC

none DDDDDDDDDDDDC

e i ther on wordl DDDEC

stolen on word2 DDDDDDDDC

stolen on word3 DDDDDDDDDDDDC

none

either on wordl

stolen on word2

stolen on word3

stolen on word4

DDDDDDDDDDDDDDDDC

DDDEC

DDDDDDDDC

DDDDDDDDDDDDC

DDDDDDDDDDDDDDDDC

NOTE:

Frame is high for entire return message

X = don't care

Z = always an Error Code

E = Error Code (Checksum bit 5=1)
= Data Byte (Checksum bit 5=0)

C = Checksum Byte

from the

mc luded .

Upstream Message Types

Figure 63

calculation and only the error byte would be

Preliminary Release Page 90 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

CS<3> = exor(D31,D27,D23,D19,DI5,D10,D7,D3,0)

CS<2> = exor(D30,D26,D22,D18,D14,D9,D6,D2,0)

CS<1> = exor(D29,D25,D21,D17,D13,D8,D5,DI,E)

CS<0> = exor(D28,D24,D20,D16,D12,D7,D4,D0,S)

...where,

CSO. .0> = message checksum

Equation - Message Checksum (single—word read, see text)
Figure 64

5.2.2.5 Rejects

A Reject is the assertion of Reverse for exactly one Switch
Interval. Rejects are not, strictly speaking, messages; because

the Switch data pins do not carry any known data. The Server
produces a Reject (assertion of Reverse for only one Switch
Interval) in either of three conditions: 1) An addressed
downstream T-Bus slave is found to be locked during an

Intitial Switch Message, 2) The Server has been configured to
reject all Downstream messages, or 3) The Server's SRU state
machine is busy while trying to return to its "idle" state.

During the Initial Switch message, the targeted Downstream
device may, in fact, be locked to a device other than the
Server. The Server issues a Reject to indicate this fact to

the Upstream Requestor. Once the Server has sucessfully

locked some device, it is still possible for a Locked Message
to attempt an access to device other than one to which the
Server is currently locked. In this situation however, the

Server does NOT issue a Reject. Instead, it sends an error

response to the upstream Requestor (see: "Error Reporting")

The Server can also be configured - via the

Preliminary Release Page 91 July 25, 1988

SIGA Specification BBN Advanced Computers

Requestor_ConfigA.Ena_SOC bit -to issue a reject on any new

incoming message. This is a synchronized enable such that it can

be asserted/negated at any time. The Server will continue to
process any pending transactions but will prevent any new ones.

Thus, the Server can be "gracefully" removed from the Switch

interface.

Whenever the Server is in any state other than its "idle" state

(locked or unlocked), it will refuse new attempts at a connection
(Frame high preceded by Frame low for for at least two Switch
Intervals) by issuing a Reject. There are many instances when a
new connection attempt would indicate an Switch protocol

violation, and thus a Reject issued by the Server would make

little difference. However, there are some situations where the

Server would correctly issue a Reject while it is off processing

some event. For instance, a drop-lock would cause the Server to

begin issuing a FREE-LOCK on the T—Bus. If new downstream Switch

message attempted to access the Server before it finished the

transaction, the Server would issue a Reject.

5.2.3 T-Bus Interface

The Server supports the standard T—Bus protocol with some small

limitations. For one, the Server does NOT support unaligned

transfers which fall accross word (32—bits) boundaries. The
Server also expects to see an ERROR response as the FIRST

response from a T—Bus Slave if that slave is goning to issue

any ERROR'S. If the Slave cannot issue an ERROR in the cycle

immediatly following the T-Bus request (i.e., the first
response cycle), it must assert T_NSPAUSE_xxx until it

decides if the request is an error or not.

5.2.4 LCON Interface

The LCON is a the physical and logical link between the SIGA-

Server and the "input" port of the Switch Gate Array (SGA). In
other words, for the SIGA, the LCON interface is the logical

Switch interface. The LCON provides the Server with: l) level
conversion to and from the ECL levels of the SGA and 2)
reclocking of data, Frame, Reverse to and from the SGA.

Preliminary Release Page 92 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Figure 65 shows the Server's LCON (Switch) Interface Pins.

PIN NAME

S_DATA<7..0>

S_FRAME

S_REVERSE

S NENA BACK

TYPE

bidi rect i onal

input

output

input

FUNCTION

Server-LCON data bus

Frame input from Switch

Reverse output to Switch

LCON TTL driver enable

Server LCON (Switch) Interface Pins
Figure 65

5.2.4.1 Data Bus Enable Control

The Server controls the enables of both its own output drivers

and the LCON's output drivers to the SIGA-LCON data interface -

S_DATA<7..0>. It does so in a manner complementary to the

Requestor's method (see "Requestor/Operation/LCON Interface/Data
Bus Enable Control). The Server uses the same concept of "Talk"
and "Listen" mode as the Requestor.

The Server is considered "quiescent" when it is not transmitting

messages and not waiting for any replies. When quiescent, the
Listen Mode. The Server tries to stay in

whenever possible, making the transition to

the absolute minimum time necessary. This

the mirror image to the Requestor. It is always in

quiescent and tries to stay in Listen mode for as

possible.

Server is in

Lis ten Mode

Talk only for

s i tuat i on is

Talk Mode when

little time as

When the Server receives the checksum of a downstream message,

it transitions to Talk mode - via the "dead" state. It remains

in Talk mode until the T—Bus transaction is complete and the

upstream return message has been sent. Once the upstream
checksum has been sent, the Server transitions immediately into

Listen mode (no contention is possible — as with the Requstor).

5.3 TCS Control Unit (TCU)

The basic purpose of the TCS Unit (TCU) is to allow the Test and

Preliminary Release Page 93 July 25, 1988

IGA Specification BBN Advanced Computers Inc

Control System (TCS) Slave Processor access to the T-Bus
interface - in esscence, to act as a protocol converter.

Normally, this involves the TCU acting like a T—Bus Master -

performing reads and writes. However, the TCU is flexible enough
so that it can also generate or "spoof" responses for any T—Bus

Master or Slave. A "spoofed" response essentially involves

issuing a response on the T—Bus in the absence of a request.

This can used, for instance, to free-up an observing T—Bus Master

who's loc);ed Slave has failed In this case, the TCU can "make

believe' that IT is the "failed" slave.

A secondary function of the TCU is to allow the TCS Slave

Processor DIRECT access to the CSU Map, rather than forcing it

to make an access via the T-Bus interface. This is useful for

fault-tolerance and bootstrapping.

5.3.1 10 Description

The TCU interface is composed of four pins on the SIGA. The

pins and their basic functions are shown in Figure 65.

C_CLK - The data shift clock. Data is shifted into the

SIGA on each rising edge of C_CLK. Data is shifted

out of the SIGA on each falling edge of C_CLK.

C_IN - TCS data into the SIGA.

C_0UT - TCS data out of the SIGA. This is a tn-state

signal which is driven when C_NEXECUTE is asserted

(=0) .

C_NEXECUTE -' Asynchronously initiates execution of a

command (=0) and enables C_OUT. In addition,
neagting C_NEXECUTE (=l) resets the TCU interface.

TCU I/O Signal Description

Figure 66

Preliminary Release Page 94 July 25, 1988

SIGA Specifico'jon BBN Advanced Computers Inc.

5.3.2 Read/Write Operation

The TCU contains 16 addressable registers — each 8—bits wide.

The TCS Slave can read any register by clocking—in the

required address (4—bits), a Read/Write bit (=l), and
assert C_NEXECUTE (=0). A read operation is illustrated in
Figure 67.

inactive | addr in | data out

C_C LK H^H^H_H_H H_H_H_H_H_H_H_H_

C_IN a3a2ala0pp

C NEXECUTE HHHHHHHHHHHHHHHHHHHHHH

C OUT d7d6d5d4d3d2dld0.

where,

a3..aO = address of register to be read

d7..dO = data from read register

pp = Read/Write bit (=1)

Timing - TCU Read Operation

Figure 67

Some additional details for Read operations - not apparent from

Figure 67 — are now discussed.

1) C_IN data is clocked-in on the positive edge of
C^CLK and C_OUT data is clocked-out on the

negative edge of C__CLK.

2) Data can be clocked in or out at any desired rate,
provided that the AC specifications of the C_CLK
pin are not violated. The duty cycle of C_CLK is

variable within the AC specifications. There is no

MAXIMUM high (=1) or low (=0) time for C_CLK.

3) Reads are non—destruetive and can be aborted at any
t ime .

Preliminary Release Page 95 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

4) C_NEXECUTE is not synchronized with C_CLK and can be

asserted at any time after the address and

Read/Write bit has been clocked—in.

5) The C_OUT pm may be used to monitor, in real
time. the value of a particular bit. This is

done by reading the appropriate register,

shiftmg-out the desired bit using C__CLK, and then

holding C_CLK steady. C_CLK can be held in

ei ther state (1 or 0) as long as it does
not make another positive transition.

6) Extra data bits preceding the negative transition
of C_NEXECUTE, are ignored.

A write operation is performed by clocking—in four bits of

data, 4-bits of address. a Read/Write bit (=0), and then
asserting C_NEXECUTE (=Ui This is illustrated in Figure 68.

inactive | command in | exec

C_C LK H_H_H_H_H_H_H_H H_H_H_H_H

C_IN d7d6d5d4d3d2dld0. .a3a2ala0pp

C_NEXECUTE HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHH

C OUT d0..

.where,

a3..aO = address of register to be written to

d7..d0 = data to be written

pp = Read/Write bit (=0)

Timing - TCU Write Operation

Figure 68

Some additional details for Write operations — not apparent from

Figure 68— are now discussed.

Preliminary Release Page 96 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

1) C_IN data is clocked—in on the positive edge of
C__CLK and C_OUT data is clocked-out on the

negative edge of C_CLK.

2) Data can be clocked in or out at any desired rate,
provided that the AC specifications of the C_CLK

pm are not violated. The duty cycle of C_CLK is

variable within the AC specifications. There is no

MAXIMUM high (=1) or low (=0) time for C_CLK.

3) Reads are non—destruetlve and can be aborted at
any time Reads of the TBUS_Response register can

be aborted as well. However if this is done AFTER

C_NEXECTUTE has been asserted, the TBUS operation

may be aborted.

4) C_NEXECUTE is not synchronized with C_CLK and can be
asserted at any time after the address and

Read/Write bit has been clocked-in.

5) C_NEXECUTE need only be asserted for a short moment
to begin execution of the command. The minimum low

time is described in "AC Specifications."

6) Extra data bits preceding the negative transition
of C_NEXECUTE. are ignored.

5.3.3 Register Map

The register map for the 16 TCU registers are shown in figure

69. Referring to Figure 69, registers 0 through 3 are special

registers. For write operations, their contents are loaded, via

the TCU interface, with the data to be written TO some T—Bus

slave. For read operations, their contents are replaced with

the data read FROM some T-Bus slave. Registers 4 through 7 are

loaded ONLY by the TCU interface. The contents of these

registers are placed on the T-Bus during the address phase of a

T-Bus request.

The registers at address "C" and "D" are used to initialize

CSU_Map<8..0>. Register "D" - bit "0", corresponds to

CSU_Map<8>. Bits 7 through 1 of register "D" are unused.

Figure 70 shows the definition of the TBUS Response and

Preliminary Release Page 97 July 25, 1988

BBN Advanced Computers Inc

a3..aO DESCRIPTION

0 T_AD<7..0> (data)
1 T_AD<15..8> (data)
2 T_AD<23..16> (data)
3 T_AD<31..24> (data)

4 T_AD<7..0> (addr)
5 T_AD<15..8> (addr)
6 T_AD<23..16> (addr)
7 T AD<31..24> (addr)

8 TBUS_Response

9 TBUS_Command

A TBUS_Command_Modifier_0

B TBUS_Command_Modifier_l

C CSU Map<7..0>

D CSU Map<8>

E unused

F unused

TCU Register Map

Figure 69

Command Registers. Referring to Figure 70, the TBUS_Response
register is a read-only register which is valid after a T—Bus
operation has been executed. The "Done" bit is monitored after
a T-Bus command is initiated by the TCU. When asserted (=1), it
indicates that the operation is complete. See the "T—Bus
Operations" section for more detail. The "Drive_AD" bit
indicates that the T_AD Bus was driven during a T-Bus access

(=1). The remaining bits in the TBUS_Response register are the
"responses" received from the T-Bus operation.

The TBUS_Command and BUS_Command_Modifier_l registers contains

the indicated fields to be placed on the T-Bus during the
address phase of any operation. The TBUS_Command_Modifier_0

Preliminary Release Page 98 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Register: TBUS„Response<7..0> (read only)

BIT/FIELD FUNCTION (read only)

<7> Done

<6> Dnve_AD

<5 - T_DRIVEN

<4> M_PARITY

<3> T_AD<32>

<2..0> T_RR<2..0>

Register: TBUS_Command<7..0>

BIT/FIELD FUNCTION

<7..6> output T_AD<33..32> (addr)
<5..3> output T_SIZE<2..0>

<2..0> output T_RR<2..0>

Register: TBUS„Command_Modifier_0<7..0>

BIT/FIELD FUNCTION

<7..0> unused

<3> Response

<2> output T_AD<32> (data)
<1..0> output T_PATH<1..0>

Register: TBUS_Command_Mod1f1er„l<7..0>

BIT/FIELD FUNCTION

<7> output T_SYNC

<6..5> output T_PRI0RITY<1..0>

<4..3> output T_LOCKOP<1..0>

<2..0> output T_S0URCE<2..0>

Register Definitions - TBUS Response and Command Registers

Figure 70

Preliminary Release Page 99 July 25, 1988

IGA Specification BBN Advanced Computers Inc

register outputs the "T_PATH" field during the address phase of

any operation and the T_AD<32> bit during the data phase of a

write operation.

The "Response" field of the TBUS_Command_Modifier_0 register,

has a special function. When asserted (=l), the TCU will place
a "0" on the T_REQUEST and drive the T-Bus FOR A SINGLE CYCLE

with the register settings intended for the address phase of a

T—Bus cycle. This is used for "spoofing" a T—Bus response. When

the "Response" field is a "1", the TCU makes a normal T—Bus

Request with T„REQUEST asserted (=1).

5.3.4 Norma: T-Bus Operations

The TCU can be used to read and write, one to four bytes.

Multi-word transfers are not allowed. The TCU can also OPEN

and FREE loci---- although this is not recommended because the TCS

Slave interface is relatively slow.

A read or write operation is setup by loading the desired

data into the registers. The operation is actually initiated by a

read of the TBUS__Response register. Since the MSB of this
register is the "Done" bit, C_CLK should be disabled just after

C_NEXECUTE is asserted (=0). This allows asynchronous
monitoring of the "Done" bit. Terminating the read by negating

(=1) C_NEXECUTE will abort the T-Bus request.

The TCU will retry after becoming REFUSED but will ignore a

REFUSED LOCKED. In other words, the TCU will not become an

"observing master."

5.3.5 Special T-Bus Operations

The TCU can FREE-LOCKS for any T-Bus master by specifying the

correct T SOURCE field value and performing a write operation.

The TCU can also spoof any one-cycle response of a Slave by
asserting the "Response" bit in the
TBUS_Command_Modifier_0 register. For instance it can issue a

COMPLETED or ERROR for some Slave that is known to be faulty.

Preliminary Release Page 100 July 25, 1988

SIGA Specification BBN Advanced Computers Inc.

5.3.6 CSU Map Initialization

The CSU_Map is a 9-bit quantity which maps the SIGA CSU into
a desired 8k page. This quantity is initialized by the TCU and

is one of the first things that must be done to the SIGA
upon power-up. If the CSU_Map is not initialized, it defaults
to the setting of all l's.

5.4 Configuration/Status Unit

The Configuration Status Unit (CSU) is the T-Bus Slave interface
which allows any T-Bus master read and write access to the
SIGA's configuration and status registers.

5 4.1 Normal Register' Accesses

The CSU is limited in its support of the T-Bus protocol and is
NOT optimized for minimum wait states (Slave pause cycles). The
CSU will respond to a T-Bus query ONLY when T-Bus bits
T_AD<24..16> match CSU_Map<8..0>. The CSU_Map is initialized by
the TCU (See: TCS Control Unit/CSU Map Initialization).

In the cycle following a request to the CSU, the CSU will either
respond with an ERROR or go on to complete the requested
function. Figure 71 shows the TCU responding with an ERROR.
Note from Figure 71, that T_NSPAUSE_SIGA is asserted for only
one cycle. The ERROR response is triggered by exactly two
conditions: l) T_SIZE<2> =1 or 2) T_L0CK0P<1> = 1. This means
that the CSU will not support multi-word writes or locking. A

normal read and write operation are shown in Figure 72. Note
from Figure 72 that T_AD02> is always a "0" on a read and a
"don't care" on a write. In addition, during write operations,

data is setup to the configuration latches during cycle #1,
written to them during cycle #2, and held at the
configuration latches during cycle #3.

5.4.2 Synchronized Accesses

Certain accesses to the CSU must be synchronized to the One

Microsecond Pulse (OMSP). These include: l) read/writes of the
Real Time Clock, and 2) writes to the TONI_A or TONI_B

Preliminary Release Page 101 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

T-Bus cycle # | 0 | 1 | 2 |
T-Bus cycle | req | resp [end |

T_NSPAUSE_SIGA HHHHHHHHHH HHHHH

T_RRO . .0> xxxxxxxxeeeee

...where,

x..x = invalid response

e..e = ERROR response

- CSU ERROR Access

Figure 71

registers. This mechanism is described in:

"Requestor/Operation/RTC and Related Functions". Essentially, all
this means to the CSU timing diagram in Figure 72, is that cycle

#2 is repeated until the synchronization pulse is received from

the RTC or TONI_A/B controller.

5.4.3 Interleaver Loader

The CSU provides support for loading and reading the

Interleaver Modulus Ram through the use of two special

registers: Inter 1eave__Address and Inter 1eave_Data; and an

external pin to the SIGA: I_NACCESS. Reads and writes to both

the Inter 1eave_Address and Inter1eave_Data registers are

different than accesses to other configuration/status
registers in the SIGA. The structure of the

Inter 1eaver_Address register is shown in Fgure 73. The structure

of the Inter 1eaver__Dat a register is shown in figure 74. As seen

in Figure 74, read/write access to the I_D register does not
involve any data transfer within the SIGA.

Preliminary Release Page 102 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

T-Bus cycle #

T-Bus cycle

0 | 1 | 2 | 3
req | resp | resp | end

T_NSPAUSE_S IGA HHHHHHHHHH HHHH

T_RRO. .0> ???????????xxxxxxxxxxxxxxcccc

T_AD<32> (read) ??'???'>???'?,??XXXXXXXXXXXXX
T_ADO1..0> (read) ????????????XXXXXXXXXXXXXRRRR

T_AD<32> (write) XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
T_ADO1..0> (write) ??????? c> 7WWWWWWWWWWWWWWWWWWWW

...where,

x..x = invalid response

c..c = COMPLETED response

X..X = invalid data

W..W = valid write data

Timing - Normal CSU Read/Write
Figure 72

5.4.3.1 Address Register Access

When a T—Bus master reads the Address_Register, the CSU

immediately responds with a Slave Pause cycle by asserting (=0)
the T_NSPAUSE_SIGA pin, as it does with all other accesses.

However, in the following cycle, the CSU also asserts the

I_NACCESS pin and places the contents of the

Inter 1eave_Address register on the T-Bus. The CSU then waits for

exactly seven (7) T—Bus cycles in this state. The mapping of
the I_A register to the T—Bus during this "wait" state is

shown in Figure 75, part (a). In the cycle following the wait
period, the CSU then negates (=1) both T_NSPAUSE_SIGA and
I_NACCESS, and maps the I_A to the T-Bus as shown in Figure 75,
part (b). The timing for writes to the I_A register is exactly
the same as for reads. The actual timing for

Preliminary Release Page 103 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Register: Inter 1eave_Address

31 0

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

...where,

A..A = interleaver address

Register Definition - Inter1eave_Address

Fi gure 73

Register: Inter 1eave_Data

31 0

(read)
(wr ite)

Register Definition — Interleave_Data

Figure 74

Inter 1eave_Address register read/write access is shown in Figure
76 .

5.4.3.2 Data Register Access

The Inter 1eave_Data access is EXACTLY the same as the

Inter 1eave_Address access EXCEPT for two key features: (1) during
writes, no data is actually stored in the SIGA, and (2) during
reads, the SIGA does NOT drive the T_AD<33..0> field. During

this time, logic external to the SIGA will manipulate the Modulus

Ram, and the SIGA is basically being used as an address decoder

and T—Bus control signal driver. The actual timing for

Preliminary Release Page 104 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

T_AD<33> = Inter 1eave_Address<1>

T_AD<32> = Interleave„Address<0>

T_ADO1..0> = Interleaver_Address<31 . .0>

(a) wait (cycle 3—9)

T_AD<33> = 0

T_AD<32> = 0

T ADO1..0> = Inter 1eaver_Address<3 1 .. 0:

>) end (cycle 10)

Inter 1eave_Address Register to T-Bus Mapping

Figure 75

Interleave_Data register read/write access is shown in Figure 77.
Note from Figure 77 that the CSU temporarily drives the T-Bus

during cycle #1. The data is unknown

5.4.4 Debug Support

The CSU supports "freezing" a CSU read or write for debugging
purposes. This is accomplished by initiating a normal T-Bus
access (see the "Timing - Normal CSU Read/Write" figure) and
asserting (=0) and holding the pin, M_NDEBUG, during cycle #1 and
#2. This will cause the CSU to repeat cycle #2 indefinitely
until M_NDEBUG is negated (=1). When this occurs, the CSU will
continue with cycle #3 as normal.

For read cycles this means that T_AD<31..0> will have the real
time state of any register being read. By reading a test
register, for example, the state machine of the STU an be
observed while it sends a message.

For write cycles, the use is somewhat limited. It simply means
that T_ADO1..0> can be manipulated in real-time from the
master (or logic analyzer). Since during cycle #2 the

Preliminary Release Page 105 July 25, 1988

SIGA Specification BBN Advanced Computers Im

T-Bus cycle # | 0 | 1 | 2
T-Bus cycle | req | resp | wait

T_NSPAUSE_SIGA HHHHHHHHH_

T_RRO . . 0>

I_NACCESS (read) HHHHHHHHHHHH .
T_AD<33..0> (read) ???aaaaa.

I_NACCESS (write) HHHHHHHHHHHH .
T_ADO3..0> (write) dddddddddddd .

10 j 11 |
end | 9 |

HHHHHHHHHHH

eecccc

HHHHHHHHHHH

aaabbbb

HHHHHHHHHHH

dddd'?9'?

...where,

c.c = COMPLETED response

a. .a = "wait" type read of I_A (bit swapping)
b..b = "end" type read of I_A (bit masking)
d..d = data written TO the I_A register

Timing — CSU Inter 1eave_Address Register Read/Write Access
Fi gure 76

configuration latches are transparent, so that any external

manipulation will be seen internally in real-time.

5 4.5 Restriction Summary

The following restictions apply to CSU operation:

6 Programming Model

This section provides a memory map of the previously defined SIGA
registers, as well as a compilation of all SIGA Error Codes.

Preliminary Release Page 106 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

T-Bus cycle # | 0
T-Bus cycle | req

1 I 2
resp | wai t

10

end

11

9

T_NSPAUSE_SIGA HHHHHHHHH_

T_RRO . .0>

HHHHHHHHHHH

ccccc

I„NACCESS (read) HHHHHHHHHHHHHH
T_AD<33..0> (read) xxxxxaaaaaaa bb

I„NACCESS (write) HHHHHHHHHHHH

HHHHHHHHHHH

.bbbbbbb

HHHHHHHHHHH

T_AD<33..0> (write) 99999999999XXX xxxxxxxxx

...where,

c.c = COMPLETED response

a..a = unknown data driven by CSU (only for one cycle)
b..b = data from/to Interleaver (not driven by SIGA)

Timing - CSU Inter 1eave_Data Read/Write Access
Figure 77

6.1 Memory Map

Figure 78 shows the memory map of the various registers. Note
from Figure 78 that the "M" field is programmable via
the CNU_Config.CSU_Map bits.

6.2 Error Code Summary

Figure 79 presents an Error Code summary for the SIGA
80 summarizes the Error Code definitions.

Fi gure

Preliminary Release Page 107 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

1) The CSU will flag as an ERROR any multi-word access
or an OPEN or MAINTAIN. Therefore, the CSU does

not support these operations. However, byte masking

on writes IS supported.

2) The CSU will NOT check for unaligned transfers. It is
illegal to request an operation with an unaligned

address .

3) Synchronized Accesses rely on the presence of R_CLK
to complete. If R_CLK is non—exisitent, the CSU

will pause the T-Bus Master indefinitely. The only

way to release the pause would be to assert the

M_NRESET pm.

4) The Stolen bit (T_AD<32>) is not supported on either
reads or wri tes.

7 Special Topics

This section describes some of the special topics relating to

SIGA operation.

7.1 Initialization States

The external Reset signal is resynchronized by the SIGA for

use by all synchronous logic clocked by all three major clocks

(R_CLK, S_CLK and T_CLK). When Reset is applied and then
released, all internal storage logic that needs to be

initialized, will be so initialized. The SIGA will now be in

its first initialization state, known as the Quiescent State.

In this state, the SIGA Switch and T-Bus interfaces are

partially disabled. The Server's Switch interface responds to
any assertions of downstream Frame with Rejects. The

Requestor's Switch interface ignores any assertions of the
upstream Reverse. The Server's T—Bus interface makes no T—Bus
requests and the Requestor's T—Bus interface responds to any
remote function requests with a REFUSED. The

Configuration/Status Unit and the TCU, however, are

Preliminary Release Page 108 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

T„AD<24..0> REGISTER

15 12 2 10

II III
M 000 XXXXXXXX000 bb TONIA_Config

001 bb Time_Of_Next_InterruptA

M 001 XXXXXXXXOOO bb TONIB_Config

001 bb Time_Of_Next_InterruptB

M 100 OXXXXXXXOOO bb Protocol_Timer_Config | Message_C1 ass
001 bb Transmit_Time_Config

010 bb Priority_Time_Config

Oil bb Requestor_ConfigA

100 bb Requestor_ConfigB

101 bb Requestor_TestA

110 bb Real_Time_Clock (hi/lo)
111 bb <reserved>

1XXXXXXXOO0 bb Server_ConflgA

001 bb Server_ConfigB

010 bb Server_TestA

M 101 OXXXXXXXXXX xx Inter1eave_Address_Reg

IXXXXXXXXXX xx Inter 1eave_Data_Reg

...where,

M = (T_AD<24..16> = CNU_Config.CSU_Map<8..0>)

bb = 00 byte 0 <31..24>

01 byte 1 <23..16>

10 byte 2 <15..8>

11 byte 3 <7..0>

xx = no byte addressing capability

SIGA Memory Map

Figure 78

Preliminary Release Page 109 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Requestor/CSU Error Codes:

7 0

I I
PPPPdcba

d c b a Requestor/ CSU Error

0 0 0 0 Maintain_Absent-(2a)
0 0 0 1 Maintam_Present-(2b)
0 0 10 Stolen_Verlfy-(1)
0 0 11 Lock_Address-(2)
0 10 0 Wait_T0-(3a)
0 10 1 Idle_T0-(3b)
0 110 Rej_Abort(4)
0 111 Rej_TO-(5)
10 0 0 Reverse-(6)
10 0 1 Check-(7)
10 10 Misc. CSU Error

.where,

P..P = Requestor_Conf igA .Er ror_Pr efixO ..0>

Priority is from highest (l) to lowest (8).
Within a given priority, errors are mutually

exclusive (i .e.,4a,b. ..).

Server Error Codes:

7 0

I I
PPPPPPba

b a Server Error

0 0 Downstream_Refused

0 1 Downstream_Write

1 0 Downstream_Late

1 1 Downstream OTL

Preliminary Release Page 110 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

...where,

P..P = Server_Conf igA .Error__Pref ix<5 ..0>

Error Code Summary

Figure 79

operational. Normally, in the Quiescent state, the TCU will

intialize the CSU's mapping logic via the

CNU^Config,CSU_Map<8..0> register. Once the Control Net

initializes the CSU_Map, any T—Bus master can then initialize

the SIGA registers via the CSU.

Once this is accomplished the SIGA is in the Operational

State. The Operational State is the normal operational mode of

the SIGA.

7.2 Synchronization

Because of the use of multiple clocks, the SIGA design inherently

requires the use of synchronizers to implement handshaking across

clock boundaries. Some of these synchronizers are in non—critical

paths and are thus implemented in the most cost—effective

manner. In particular, these synchronizers are of the "large

uncertainty, fixed—delay" variety. This means that there delay

is not programmable and that "input-to-output" delay is not

constant over changes in input. These are used in areas such

as: 1) Between the external reset pin, M_NRESET, and the
internal reset destinations, 2) Between the TCU negation of
C_NEXECUTE and the T_Bus access. These synchonizers are designed

to provide a MINIMUM of 100 ns settling time (T_CLK <= 22 MHz,
R_CLK,S_CLK <= 45 Mhz).

The other variety of synchonizers — used in critical path

applications — are the "variable delay, zero uncertainty"
synchronizers. These are used beween the T—Bus and Switch

interfaces along the Function request/response paths. These
are the synchronizers which have 4—bits of configuration to

control the settling time. Figure 81 shows the various

settings for ALL variable-delay synchronizers. Figure

81 should be used in combination with the clock period of the

Preliminary Release Page 111 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

Maintain_Absent - An NORMAL was issued to the Requestor
during its idle state and it was locked.

Maintain_Present — A MAINTAIN was issued to the

Requestor during its idle state and it was NOT

1ocked.

Lock_Address - A Function Request was made to a locked

Requestor during its idle state with a node address

was different than that which opened the locked

sequence.

Wait_TO - The Switch Transmit Connection Timer

overflowed while the Requestor was waiting for a

Function Response.

Idle_TO - The Switch Transmit Connection Timer

overflowed while the Requestor was in its idle

state.

Rej_Abort — The Switch Transmit Reject Timer was forced

into overflow by the the REJ_ABORT input pin.

Rej_TO - The Switch Transmit Reject Timer overflowed

while the Requestor was attempting to open a

connect ion.

Reverse — The Requestor detected an incorrect polarity

of the Reverse signal during a Function Response.

Check - The Requestor detected an incorrect Checksum

during a Function Response.

CSU Error — An error was made accessing the CSU. It

could be one or both of the of the following: 1) An
OPEN lock was requested or 2) A Multi—word transfer
was requested.

Downstream_Write — A downstream write error was detected

while the downstream Server was sourcing data.

Downstream_OTL - A downstream T-Bus slave did not

Preliminary Release Page 112 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

respond to the Server's request.

Downstream_Late — A downstream T-Bus slave responded

with a LATE ERROR.

Downstream_Refused - A downstream T—Bus slave responded

with REFUSED-LOCKED when the Server thought itself

1ocked.

Error Code Definition Summary

Figure 80

3210 # CLOCK DELAYS TRANSFER EDGE

0000 1 Pos 1 t i ve

0001 1 Negat i ve

0010 2 Pos i t i ve

0011 2 Negat lve

0100 3 Pos i t l ve

0101 3 Negat l ve

0110 4 Pos i t i ve

0111 4 Negat i ve

1000 5 Pos i t ive

1001 5 Negat ive

1010 ILLEGAL -

1011 ILLEGAL -

1100 ILLEGAL -

1101 ILLEGAL -

1110 ILLEGAL -

1111 ILLEGAL -

Variable-Delay Synchronizer Settings

Figure 81

logic RECEIVING the synchronizer data to determine the actual
settling time. For instance, if a 100 ns settling time on the
positive edge is desired for the STU Synchronizer, the

Preliminary Release Page 113 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

register: Requestor_ConfigA.STU SyncO..0>, should be set to a

"0110." This is because assuming R_CLK - 40 MHz (25 ns period),
the synchronizer will require four clock periods - at 25 ns a

piece - to obtain the total of 100 ns.

On the other hand, the BIU Synchronizer control,

set by Requestor_ConfigA.BIU SyncO..0>, would need a setting

of "0010" to obtain the same settling time. Here, of course, the

clock period is twice as long as the STU Synchronizer so the

number of synchronizer clock delays is half.

NOTE: Currently, it is recommended that only the POSITIVE

transfer edge be used for any setting.

NOTE: It has been determined that a settling time of 100 ns is

a reasonable goal for the variable-delay synchronizers.

8 Pm Description and Pinout

The next page begins a pin description of the SIGA:

Preliminary Release Page 114 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

PIN NAME TYPE DESCRIPTION

C^CLK IN

C_IN IN

C_NEXECUTE IN

C_OUT OUT

F_AD<24..16> IN

F_PATH<1..0> IN

F_REQUEST IN

F_RR<2..0> IN

F_SIZE_2 IN

F SOURCEO..0> IN

I_INTERLEAVED IN

I_M0D<8.,0> IN

I_NACCESS OUT

M_NDEBUG IN

M_NFLOAT IN

M_NRESET IN

M_NSELECT IN

M_PARA OUT

M_PARITY IN

M_REJ_ABORT IN

M_SIXTY_FIVE IN

M_TONIA_INT OUT

M_TONIB_INT OUT

R_CLK IN

R_DATA<7..0> BID

R_FRAME OUT

R_NENA_BACK OUT

R_REVERSE IN

S_CLK IN

S DATA<7..0> BID

Preliminary Release

TCU input clock

TCU data input

TCU execute handshake input

TCU data output

T-Bus input for T_AD<24..16>

T-Bus input for T_PATH<1..0>

T-Bus input for T_REQUEST

T-Bus input for T_RR<2..0>

T-Bus input for T_SIZE_2

T-Bus input for T_S0URCE<2

=0. do NOT use I_MOD<8..0>

=1: use I_MOD<8..0> for route addre

Interleaver data input

= 0

= 1

=0

= 1

=0

=1

=0

=1

=0

= 1

Parametric nand tree output (TEST ONLY)
=0

= 1

=0

= 1

=0

= 1

= 0

=1

=0

=1

.0>

for route address

CSU Interleaver loader is active

CSU Interleaver loader is NOT active

Debug mode during CSU access (TEST ONLY

Do NOT enter debug mode (NORMAL MODE)

Tri-state all ouputs (TEST ONLY)
Normal output operation (NORMAL MODE)
Hardware reset to SIGA

Normal operational mode

Select CSU, attach to T_PATH<l/0>
Do NOT select CSU

No parity error during T-Bus respnse

Parity error during T-Bus response

Do NOT abort Switch retries

Abort Switch retries

65 ms pulse NOT active

65 ms pulse active (one R_CLK period)
TONIA interrupt is active

TONIA interrupt is NOT active

TONIB interrupt is active

TONIB interrupt is NOT active

Requestor clock input

Requestor Switch data interface

Requestor Switch Frame output

=0: Enable LCON to drive R_DATA<7..0>

=1: Disable LCON from driving R_DATA<7..0>

Requestor Switch Reverse Input

Server clock input

Server Switch data interface

Page 115 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

IN Server Switch Frame input

OUT =0: Disable LCON from driving S_DATA- 7..0>

=1: Enable LCON to drive S_DATA<7..0>

OUT Server Switch Reverse Input

BID T-Bus input/output for T_AD<33..25>
OUT T-Bus output for T_AD<24..16>

BID T-Bus input/output for T_AD<15..0>
IN T—Bus input clock

OUT T-Bus output for T_DRIVEN

IN =0: Disable T-Bus input latches

=1: Enable T-Bus input latches

OUT =0: Enable T_AD<33..0> drivers

=1: Disable T_AD<33..0> drivers

OUT =0: Disable T_AD<33..0> drivers

=1: Enable T_AD<33..0> drivers

OUT =0: Enable transaction T-Bus field

=1: Disable transaction T—Bus field

OUT =0: Disable transaction T-Bus field

=1: Enable transaction T—Bus field

BID T-Bus input/output for T_L0CK0P<1..0>
OUT T-Bus output for T_MPAUSE

IN =0: SIGA Master granted next T-Bus

=1: SIGA Master NOT granted next T-Bus

IN =0: SIGA Slave granted next T-Bus

=1: SIGA Slave NOT granted next T-Bus

OUT =0: SIGA Master is requesting T-Bus

=1: SIGA Master is NOT requesting T-Bus

OUT =0: SIGA Slave is requesting T-Bus

=1: SIGA Slave is NOT requesting T-Bus

OUT =0: SIGA is driving T-Bus next cycle

=1: SIGA is NOT driving T-Bus next cycle

OUT =0: SIGA is pausing T-Bus next cycle

=1: SIGA is NOT pausing T-Bus next cycle

OUT T-Bus output for T_PATH<1..0>

BID T-Bus input/output for T_PRI0RITY<1..0>
OUT T-Bus output for T_REQUEST

OUT T-Bus output for T_RR<2..0>

OUT T-Bus output for T_SIZE.2

BID T-Bus input/output for T_SIZE<1..0>
OUT T-Bus output for T SOURCEO ..0>

OUT T-Bus output for T_SPAUSE

BID T-Bus input/output for T_SYNC

S_FRAME

S_NENA_BACK

S_REVERSE

T_AD<33..25>

T_AD<24..16>

T_AD<15..0>

T_CLK

T_DRIVEN

T_ENA_HOLD

T_ENA_TDAT .2

T_ENA_TDAT<1..0>

T_ENA_TRANS.1

T_ENA_TRANS.0

T_L0CK0P<1..0>

T_MPAUSE

T_NBGRANT_SIGM

T_NBGRANT_SIGS

T_NBREQ_SIGM

T_NBREQ_SIGS

T_NDRIVEN_SIGA

T_NSPAUSE_SIGA

T_PATH<1..0>

T_PRI0RITY<1..0>

T_REQUEST

T_RR<2..0>

T SIZE. 2

T_SIZE<1..0>

T_SOURCE<2..0>

T SPAUSE

T SYNC

The following page shows the SIGA pinout sorted by pin function.

Preliminary Release Page 116 July 25, 1988

IIGA Specification BBN Advanced Computers Inc

SIGA PINOUT SORTED BY PIN FUNCTION

R15 C_CLK R06 R_DATA.6 B12 T_DRIVEN

T14 C_IN P06 R_DATA.7 C12 T_ENA_HOLD

R14 C_NEXECUTE R05 R_FRAME C03 T_ENA_TDAT.0

P13 C_OUT T05 R_NENA_BACK B03 T_ENA_TDAT.1

B09 F_AD.16 T04 R_REVERSE A03 T_ENA_TDAT.2

C09 F_AD.17 T13 S_CLK C14 T_ENA_TRANS.0

A10 F_AD.18 T12 S_DATA.0 C15 T_ENA_TRANS.1

BIO F_AD.19 Pll S_DATA.1 D01 T_LOCKOP.0

CIO F_AD.2 0 Rll S_DATA.2 D02 T_LOCKOP.1

Al 1 F_AD.21 Til S_DATA.3 E01 T_MPAUSE

Bl 1 F_AD.2 2 PIO S_DATA.4 A06 T_NBGRANT_SIGM

CI 1 F_AD.2 3 RIO S_DATA.5 C07 T_NBGRANT SIGS

A12 F_AD.24 TIO S_DATA.6 C05 T_NBREQ_SIGM

A05 F_C LK P09 S_DATA.7 B05 T_NBREQ_SIGS

A0 7 F_PATH.0 R13 S_FRAME C06 T_NDRIVEN_SIGA

C08 F_PATH.1 R12 S_NENA_BACK B06 T_NSPAUSE_SIGA

B14 F_REQUEST P12 S_REVERSE C13 T_PATH.0

C04 F_RR.0 P02 T_AD.0 A14 T_PATH.1

B04 F_RR.1 N03 T_AD.1 E02 T_PRIORITY.O

A04 F_RR.2 F14 T_AD.10 E03 T_PRIORITY.1

F03 F_SIZE_2 F15 T_AD.11 A13 T_REQUEST

G03 F SOURCE 0 F16 T_AD.12 D14 T_RR.0

F01 F_SOURCE.1 G14 T_AD.13 D15 T_RR.1

F02 F SOURCE.2 G15 T_AD.14 D16 T_RR.2

B02 I_INTERLEAVED G16 T_AD.15 E14 T_SIZE.O

M02 I_MOD.0 H14 T_AD.16 E15 T_SIZE.1

M01 I_MOD. 1 H15 T_AD.17 E16 T SIZE.2

LOS I_MOD.2 J15 T_AD.18 D03 T SOURCE.0

L02 I_MOD. 3 J14 T_AD.19 C01 T SOURCE.1

L01 I_MOD.4 P0 1 T„AD.2 C02 T SOURCE.2

K03 I_MOD.5 K16 T_AD.20 B15 T_SPAUSE

K02 I_MOD.6 K15 T_AD.21 B13 T_SYNC

KOI I_MOD.7 K14 T_AD.22 A09 VDD

JOS I_MOD.8 L16 T_AD.23 A15 VDD

P03 I_NACCESS L15 T_AD.24 B01 VDD

R02 M_NDEBUG L14 T_AD.25 B16 VDD

P14 M_NFLOAT M16 T_AD.26 J01 VDD

T15 M_NRESET M15 T_AD.27 J16 VDD

B07 M_NSELECT M14 T_AD.28 T01 VDD

R03 M_PARA N16 T_AD.29 T08 VDD

C16 M_PARITY NO 2 T_AD.3 T16 VDD

Preliminary Release Page 117 July 25, 1988

:r>ec i f icat i on

N15 T._AD 30

N14 T__AD 31

P16 T__AD 32

P15 T..AD 33

N01 T__AD 4

M03 T _AD 5

H02 T_.AD 6

H03 T__AD 7

G01 T__AD 8

G02 T__AD 9

B08 T CLK

BBN Advanced Computei Inc

| A02 VSS

| A08 VSS

| A16 VSS

| HOI VSS

| H16 VSS

| R01 VSS

| R16 VSS

| T02 VSS

| T07 VSS

| T09 VSS

R0 4 M_REJ_ABORT

JOS M_S1XTY_FIVE

P04 M_TONIA_INT

T03 M TONIB INT

P05 R_CLK

R09 R_DATA.0

R08 R_DATA.1

P08 R_DATA.2

R07 RJDATA.3

P07 R_DATA.4

T06 R_DATA.5

he f o11 owing page shows the SIGA pinout sorted by pin number

Preliminary Release Page 118 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

SIGA PINOUT SORTED BY PIN NUMBER

A02 VSS D16 T_RR.2 N14 T_AD.3 1

A03 T_ENA_TDAT .2 E01 T_MPAUSE N15 T_AD.30

A04 F_RR.2 E02 T_PRIORITY.O N16 T_AD.29

A05 F_CLK E03 T_PRIORITY.1 POl T_AD.2

A06 T_NBGRANT_SIGM E14 T SIZE.O P02 T_AD.0

A07 F_PATH.0 E15 T SIZE. 1 P03 I„NACCESS

A08 VSS E16 T_SIZE.2 P04 M_TONIA_INT

A09 VDD F01 F SOURCE.1 P05 R_CLK

A10 F_AD.18 F02 F SOURCE.2 P06 R_DATA.7

Al 1 F_AD.21 F03 F_SIZE_2 P07 R_DATA.4

A12 F_AD.24 F14 T_AD.10 P08 R_DATA.2

A13 T_REQUEST F15 T_AD.11 P09 S_DATA.7

A14 T_PATH.1 F16 T_AD.12 PIO S_DATA.4

A15 VDD G01 T_AD.8 Pll S_DATA.1

A16 VSS G02 T_AD.9 P12 S_REVERSE

B01 VDD G03 FSOURCE.0 P13 C_OUT

B02 I_INTERLEAVED G14 T_AD.13 P14 M_NFLOAT

B03 T_ENA_TDAT . 1 G15 T_AD.14 P15 T_AD.33

B04 F_RR.1 G16 T_AD.15 P16 T_AD.32

B05 T_NBREQ_SIGS HOI VSS ROl VSS

B06 T_NSPAUSE_SIGA H02 T_AD.6 R02 M_NDEBUG

B07 M_NSELECT H03 T_AD.7 R03 M_PARA

B08 T_CLK H14 T_AD.16 R04 M_REJ_ABORT

B09 F_AD.16 H15 T„AD.17 R05 R_FRAME

BIO F_AD.19 H16 VSS R06 R_DATA.6

Bll F_AD.22 J01 VDD R07 R_DATA.3

B12 T_DRIVEN J02 M_SIXTY_FIVE R08 R_DATA.1

B13 T^SYNC J03 I_MOD.8 R09 R_DATA.0

B14 F_REQUEST J 14 T_AD.19 RIO S_DATA.5

B15 T SPAUSE J 15 T_AD.18 Rll S_DATA.2

B16 VDD J16 VDD R12 S_NENA_BACK

C01 TSOURCE.1 KOI I_MOD.7 R13 S_FRAME

C02 T_SOURCE.2 K02 I_MOD.6 R14 C_NEXECUTE

C03 T„ENA_TDAT .0 K03 I_MOD.5 R15 C_CLK

C04 F_RR.0 K14 T_AD.22 R16 VSS

C05 T_NBREQ_SIGM K15 T_AD.21 TOl VDD

C06 T_NDRIVEN_SIGA K16 T_AD.20 T02 VSS

C07 T_NBGRANT_SIGS LOl I_MOD.4 T03 M_TONIB_INT

C08 F_PATH.1 L02 I_MOD.3 T04 R_REVERSE

C09 F_AD.17 L03 I_MOD.2 T05 R_NENA_BACK

CIO F_AD.20 L14 T_AD.25 T06 R_DATA.5

Preliminary Release Page 119 July 25, 1988

IGA Specification BBN Advanced Computers Inc

CI 1 F_AD.23 L15 T_AD.24 T07 VSS

CI 2 T_ENA_HOLD L16 T_AD.23 T08 VDD

C13 T_PATH.0 M01 I_MOD.1 T09 VSS

C14 T_ENA_TRANS.0 M02 I_MOD.0 TIO S_DATA.6

C15 T_ENA_TRANS.1 M03 T_AD.5 Til S_DATA .3

C16 M_PARITY M14 T_AD.28 T12 S_DATA.0

D01 T_LOCKOP.0 M15 T_AD.27 T13 S_CLK

D02 T^LOCKOP 1 M16 T_AD.26 T14 C_IN

DO 3 T SOURCE 0 N01 T_AD.4 T15 M„NRESET

D14 T_RR.0 N02 T_AD.3 T16 VDD

D15 T_RR.1 N03 T_AD.1

9 A.C./D.C. Parameters

All SIGA input and bidirectional pins have a light pullup

resistor, a diode protection network (max = 2000V) and latch—up
(max = 200 ma). All inputs and output have standard TTL VIL/VIH
and VOL/VOH characteristics. All outputs and bidirectional pins
have 4ma drive capability - except T_ENA_TDAT<2..0> and

T_ENA_TRANS<1..0>, which have 8 ma drive capability. The SIGA

will dissipate less than 3 watts.

The following page shows the A.C. timing parameters.

Note: for the B2/VME, the following A.C. parameters override the

normal ones:

PIN/CLASS

T_NDRIVEN_SIGA

F SOURCEO . .0>

Preliminary Release

Tsu Thld Tpd (min/max) LOAD

2.0/11.0 20.0

21 .0 0. 0

Page 120 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

SIGA A.C. CHARACTERISTICS

PIN/CLASS Tsu Thld Tpd (min/max) LOAD

TBUS:

T_DRIVEN 25 .0 0. 0

T_MPAUSE 25.0 0.0 -

T_SPAUSE 25.0 0 .0 -

T_NBGRANT_SIGM 25. 0 0.0 -

T_NBGRANT_SIGS 25. 0 0.0 -

T_REQUEST (a) (a) 2 0/18 0 30 0

T_RR<2..0> (a) (a) 2 0/18 0 30 0

T_PATH<1..0> (a) (a) 2 0/18 0 30 0

T_S0URCE<2..0> (a) (a) 2 0/18 0 30 0

TSIZE.2 (a) (a) 2 0/18 0 30 0

T_SIZE<1..0> 20.0 0.0 2 0/18 0 30 0

T_SYNC 20.0 0.0 2 0/18 0 30 0

T_LOCKOP<1. .0> 20.0 0.0 2 0/18 0 30 0

T_PRI0RITY<1..0> 20. 0 0.0 2 0/18 0 30 0

T_AD<33..0> 20.0 0.0 2 0/18 0 30 0

T_NBREQ_SIGM — — 2 0/13 0 20 0

T_NBREQ_SIGS - - 2 0/13 0 20 0

T_NDRIVEN SIGA - - 2 0/13 0 20 0

T_NSPAUSE_SIGA - — 2 0/13 0 20 0

T_ENA_TDAT-.2 . .0> — — 2 0/16 0 30 0

T_ENA_TRANS-' 1 . .0> ...

- 2 0/16 0 30 0

FAST:

F_REQUEST

F_RR<2..0>

F SOURCEO . .0>

F_PATH<1

F SIZE 2

F AD<24.

SWITCH

0>

16>

REQ:

Preliminary Release

25 0 0 0

24 0 0 0

25 0 0 0

25 0 0 0

25 0 0 0

25 0 0 0

Page 121 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

R_DATA<7..0> 7.8 14. 2 2 0/14 0 20 0

R_REVERSE 7.8 14. 2 -

R_FRAME - - 2 0/14 0 20 0

R_NENA_BACK — - 2 0/14 0 20 0

SWITCH - SER:

7.8 14. 2 2 0/14 0 20S_DATA<7..0> 0

S^FRAME 7.8 14. 2 -

S^REVERSE - - 2 0/14 0 20 0

S NENA BACK — - 2 0/14 0 20 0

TCS

C_IN 50. 0 50. 0 -
-

C_OUT - -

o 0/50 0 2 0 0

C_NEXECUTE 50 .0 50. 0 -
-

INTERLEAVER:

17.0 0.0I_MOD<8. .0> —

I_INTERLEAVED 24.0 0. 0 - -

I_NACCESS — — 2 0/30 0 20.0

MISCELLANEOUS:

2 0/30 0M_TONIA_INT 20.0

M_TONIB_INT - - 2 0/30 0 20.0

M_PARITY 21 .0 0.0 - -

M_NSELECT 25.0 0. 0 - -

M_NDEBUG 25.0 24. 0 - -

M_SIXTY_FIVE 7. 9 14. 9 - -

M_NRESET (b) (b) - -

M_REJ_ABORT (b) (b) - -

NOTES:

spec if ic:

(a) No internal connection to SIGA — timing is unimportant
(b) Synchronized within SIGA - timing is unimportant

Preliminary Release Page 122 July 25, 1988

SIGA Specification BBN Advanced Computers Inc

general:

1. All times in nanoseconds

2. All loads in picofarads

3. TBUS, FAST and INTERLEAVER timing are relative

to rising T_CLK

4. SWITCH - REQ timing is relative to rising R_CLK

5. SWITCH - SER timing is relative to rising S_CLK

6. TCS timing is relative to falling C_CLK

Preliminary Release Page 123 July 25, 1988

